• 1.

    Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Hallström, E. et al. Combined climate and nutritional performance of seafoods. J. Clean. Prod. 230, 402–411 (2019).


    Google Scholar
     

  • 3.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Halpern, B. S. et al. Opinion: Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    The State of World Fisheries and Aquaculture (SOFIA) (FAO, 2020).

  • 6.

    The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW): Managing Systems at Risk (FAO, 2011).

  • 7.

    Food Security and Nutrition: Building a Global Narrative Towards 2030 (HLPE, 2020).

  • 8.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Micha, R. et al. 2020 Global Nutrition Report: Action on Equity to End Malnutrition (Global Nutrition Report, 2020).

  • 10.

    Golden, C. D. Aquatic foods to nourish nations. Nature (in the press).

  • 11.

    Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Hoegh-Guldberg, O. et al. The Ocean as a Solution to Climate Change: Five Opportunities for Action (Ocean Panel, 2019).

  • 13.

    Farmery, A. K., Gardner, C., Jennings, S., Green, B. S. & Watson, R. A. Assessing the inclusion of seafood in the sustainable diet literature. Fish Fish. 18, 607–618 (2017).


    Google Scholar
     

  • 14.

    MacLeod, M. J., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).


    Google Scholar
     

  • 16.

    Gephart, J. A. et al. The ‘seafood gap’ in the food-water nexus literature—issues surrounding freshwater use in seafood production chains. Adv. Water Resour. 110, 505–514 (2017).

    ADS 

    Google Scholar
     

  • 17.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Reap, J., Roman, F., Duncan, S. & Bras, B. A survey of unresolved problems in life cycle assessment: Part 2: impact assessment and interpretation. Int. J. Life Cycle Assess. 13, 374–388 (2008).


    Google Scholar
     

  • 20.

    Henriksson, P. J. G. et al. A rapid review of meta-analyses and systematic reviews of environmental footprints of food commodities and diets. Glob. Food Secur. 28, 100508 (2021).


    Google Scholar
     

  • 21.

    Naylor, R. L. et al. Blue food demand across geographic and temporal scales. Nature (in the press).

  • 22.

    Henriksson, P. J. G., Pelletier, N. L., Troell, M. & Tyedmers, P. Life cycle assessment and its application to aquaculture production systems. In Encyclopedia of Sustainability Science and Technology (ed. Meyers, R.) (Springer, 2012).

  • 23.

    Richards, D. R., Thompson, B. S. & Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 11, 4260 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Gephart, J. A., Pace, M. L. & D’Odorico, P. Freshwater savings from marine protein consumption. Environ. Res. Lett. 9, 014005 (2014).

    ADS 

    Google Scholar
     

  • 25.

    van Oirschot, R. et al. Explorative environmental life cycle assessment for system design of seaweed cultivation and drying. Algal Res. 27, 43–54 (2017).


    Google Scholar
     

  • 26.

    Ray, N. E., O’Meara, T., Wiliamson, T., Izursa, J.-L. & Kangas, P. C. Consideration of carbon dioxide release during shell production in LCA of bivalves. Int. J. Life Cycle Assess. 23, 1042–1048 (2018).

    CAS 

    Google Scholar
     

  • 27.

    Iribarren, D., Moreira, M. T. & Feijoo, G. Revisiting the life cycle assessment of mussels from a sectorial perspective. J. Clean. Prod. 18, 101–111 (2010).


    Google Scholar
     

  • 28.

    Tegtmeier, S. et al. Emission and transport of bromocarbons: from the West Pacific ocean into the stratosphere. Atmospheric Chem. Phys. 12, 10633–10648 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    King, G. M. Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar. Ecol. Prog. Ser. 224, 69–75 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Flores, S. R. L., Dobbs, J. & Dunn, M. A. Mineral nutrient content and iron bioavailability in common and Hawaiian seaweeds assessed by an in vitro digestion/Caco-2 cell model. J. Food Compos. Anal. 43, 185–193 (2015).

    CAS 

    Google Scholar
     

  • 31.

    Parker, R. W. R. & Tyedmers, P. H. Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fish. 16, 684–696 (2015).


    Google Scholar
     

  • 32.

    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).


    Google Scholar
     

  • 33.

    Henriksson, P. J. G. et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci. 13, 1105–1120 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Murray, A. G. Epidemiology of the spread of viral diseases under aquaculture. Curr. Opin. Virol. 3, 74–78 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Svedäng, H. & Hornborg, S. Selective fishing induces density-dependent growth. Nat. Commun. 5, 4152 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Howarth, L. M., Roberts, C. M., Thurstan, R. H. & Stewart, B. D. The unintended consequences of simplifying the sea: making the case for complexity. Fish Fish. 15, 690–711 (2014).


    Google Scholar
     

  • 38.

    Roda, M. A. P. et al. A Third Assessment of Global Marine Fisheries Discards (FAO, 2019).

  • 39.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Weitzman, J. & Filgueira, R. The evolution and application of carrying capacity in aquaculture: towards a research agenda. Rev. Aquac. 12, 1297–1322 (2019).


    Google Scholar
     

  • 41.

    Martin, D. A. et al. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 13, e12740 (2020).


    Google Scholar
     

  • 42.

    Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).


    Google Scholar
     

  • 43.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).


    Google Scholar
     

  • 44.

    Selkoe, K. A. et al. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 1, 1–18 (2015).


    Google Scholar
     

  • 45.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed 

    Google Scholar
     

  • 46.

    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Costello, C., Cao, L. & Gelcich, S. The Future of Food from the Sea (Ocean Panel, 2019).

  • 48.

    Bohnes, F. A., Hauschild, M. Z., Schlundt, J. & Laurent, A. Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Rev. Aquac. 11, 1061–1079 (2019).


    Google Scholar
     

  • 49.

    Bergman, K. et al. Recirculating aquaculture is possible without major energy tradeoff: life cycle assessment of warmwater fish farming in Sweden. Environ. Sci. Technol. 54, 16062–16070 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Stevens, J. R., Newton, R. W., Tlusty, M. & Little, D. C. The rise of aquaculture by-products: increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 90, 115–124 (2018).


    Google Scholar
     

  • 51.

    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).


    Google Scholar
     

  • 52.

    Pelletier, N., Klinger, D. H., Sims, N. A., Yoshioka, J.-R. & Kittinger, J. N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 52, 5532–5544 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Hornborg, S. & Smith, A. D. M. Fisheries for the future: greenhouse gas emission consequences of different fishery reference points. ICES J. Mar. Sci. 77, 1666–1671 (2020).


    Google Scholar
     

  • 54.

    The Sunken Billions Revisited: Progress and Challenges in Global Marine Fisheries. (World Bank, 2017).

  • 55.

    Understanding seafood consumers. MSC https://www.msc.org/understanding-seafood-consumers (2021).

  • 56.

    Moberg, E. et al. Combined innovations in public policy, the private sector and culture can drive sustainability transitions in food systems. Nat. Food 2, 282–290 (2021).


    Google Scholar
     

  • 57.

    Fairbanks, L. Moving mussels offshore? Perceptions of offshore aquaculture policy and expansion in New England. Ocean Coast. Manag. 130, 1–12 (2016).


    Google Scholar
     

  • 58.

    Säll, S. & Gren, I.-M. Effects of an environmental tax on meat and dairy consumption in Sweden. Food Pol. 55, 41–53 (2015).


    Google Scholar
     

  • 59.

    Fischer, C. G. & Garnett, T. Plates, Pyramids, Planet: Developments in National Healthy and Sustainable Dietary Guidelines: A State of Play Assessment (FAO, 2016).

  • 60.

    Jones, S., Bruno, D., Madsen, L. & Peeler, E. Disease management mitigates risk of pathogen transmission from maricultured salmonids. Aquac. Environ. Interact. 6, 119–134 (2015).


    Google Scholar
     

  • 61.

    Antonucci, F. & Costa, C. Precision aquaculture: a short review on engineering innovations. Aquac. Int. 28, 41–57 (2020).


    Google Scholar
     

  • 62.

    Österblom, H., Jouffray, J.-B., Folke, C. & Rockström, J. Emergence of a global science–business initiative for ocean stewardship. Proc. Natl Acad. Sci. USA 114, 9038–9043 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Watson, J. R., Armerin, F., Klinger, D. H. & Belton, B. Resilience through risk management: cooperative insurance in small-holder aquaculture systems. Heliyon 4, e00799 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Hasan, M. R. On-farm Feeding and Feed Management in Aquaculture (FAO, 2010).

  • 65.

    Bondad-Reantaso, M. G. Assessment of Freshwater Fish Seed Resources for Sustainable Aquaculture (FAO, 2007).

  • 66.

    Gutiérrez, N. L. et al. Eco-label conveys reliable information on fish stock health to seafood consumers. PLoS ONE 7, e43765 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Bush, S. R. et al. Inclusive environmental performance through ‘beyond-farm’ aquaculture governance. Curr. Opin. Environ. Sustain. 41, 49–55 (2019).


    Google Scholar
     

  • 68.

    Jouffray, J.-B., Crona, B., Wassénius, E., Bebbington, J. & Scholtens, B. Leverage points in the financial sector for seafood sustainability. Sci. Adv. 5, eaax3324 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Gephart, J. A. et al. Scenarios for global aquaculture and its role in human nutrition. Rev. Fish. Sci. Aquac. 29, 122–138 (2021).


    Google Scholar
     

  • 70.

    Myers, H. J. & Moore, M. J. Reducing effort in the U.S. American lobster (Homarus americanus) fishery to prevent North Atlantic right whale (Eubalaena glacialis) entanglements may support higher profits and long-term sustainability. Mar. Policy 118, 104017 (2020).


    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *