• 1.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 2.

    International Energy Agency (IEA). The future of petrochemicals. IEA https://www.iea.org/reports/the-future-of-petrochemicals (2018).

  • 3.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Law, K. L. Plastics in the marine environment. Ann. Rev. Mar. Sci. 9, 205–229 (2017).

    Article 

    Google Scholar
     

  • 5.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018).

  • 7.

    Law, K. L. et al. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 6, eabd0288 (2020).

    Article 

    Google Scholar
     

  • 8.

    Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    World Health Organization (WHO). Microplastics in drinking-water. WHO https://apps.who.int/iris/handle/10665/326499. License: CC BY-NC-SA 3.0 IGO (2019).

  • 10.

    Zubris, K. A. V. & Richards, B. K. Synthetic fibers as an indicator of land application of sludge. Environ. Poll. 138, 201–211 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12, 529–599 (2015).


    Google Scholar
     

  • 12.

    Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Sharma, R. & Ghoshal, G. Emerging trends in food packaging. Nutr. Food Sci. 48, 764–779 (2018).

    Article 

    Google Scholar
     

  • 15.

    Matthews, C., Moran, F. & Jaiswal, A. K. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2021).

    Article 

    Google Scholar
     

  • 16.

    Kenyon, K. W. & Kridler, E. Laysan albatrosses swallow indigestible matter. Auk 86, 339–343 (1969).

    Article 

    Google Scholar
     

  • 17.

    Kartar, S., Milne, R. A. & Sainsbury, M. Polystyrene waste in the Severn Estuary. Mar. Pollut. Bull. 4, 144 (1973).

    Article 

    Google Scholar
     

  • 18.

    Buchanan, J. B. Pollution by synthetic fibres. Mar. Pollut. Bull. 2, 23 (1971).

    Article 

    Google Scholar
     

  • 19.

    Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso sea surface. Science 175, 1240–1241 (1972).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Holmstrom, A. Plastic films on the bottom of the Skagerack. Nature 255, 622–623 (1975).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Venrick, E. L. et al. Man-made objects on the surface of the central North Pacific Ocean. Nature 241, 271 (1973).

    Article 

    Google Scholar
     

  • 23.

    National Research Council. Assessing Potential Ocean Pollutants: A Report of the Study Panel on Assessing Potential Ocean Pollutants to the Ocean Affairs Board, Commission on Natural Resources, National Research Council (National Academy of Sciences, 1975).

  • 24.

    Rochman, C. M. et al. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology 97, 302–312 (2016).

    Article 

    Google Scholar
     

  • 25.

    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 2, e02044 (2020).


    Google Scholar
     

  • 26.

    Zhang, D. et al. Plastic pollution in croplands threatens long-term food security. Glob. Change Biol. 26, 3356–3367 (2020).

    Article 

    Google Scholar
     

  • 27.

    Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Rochman, C. M. et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Ribeiro, F. et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 54, 9408–9417 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Mintenig, S. M., Löder, M. G. J., Primpke, S. & Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 648, 631–635 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    United States Environmental Protection Agency. Plastic Pellets in the Aquatic Environment: Sources and Recommendations (United States Environmental Protection Agency, 1993).

  • 35.

    Sutton, R., et al. Understanding microplastic levels, pathways, and transport in the San Francisco Bay region. San Francisco Estuary Institute (SFEI) https://www.sfei.org/documents/understanding-microplastics. SFEI Contribution No. 950 (2019).

  • 36.

    Sherrington, C. Plastics in the marine environment. Eunomia https://www.eunomia.co.uk/reports-tools/plastics-in-the-marine-environment/ (2016).

  • 37.

    Boucher, J. & Friot, D. Primary microplastics in the oceans: a global evaluation of sources. International Union for Conservation of Nature (IUCN) https://www.iucn.org/content/primary-microplastics-oceans (2017).

  • 38.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Hoellein, T. J. & Rochman, C. M. The “plastic cycle”: a watershed-scale model of plastic pools and fluxes. Front. Ecol. Environ. 19, 176–183 (2021).

    Article 

    Google Scholar
     

  • 41.

    van Sebille, E. et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).

    Article 

    Google Scholar
     

  • 42.

    Ribic, C. A., Sheavly, S. B., Rugg, D. J. & Erdmann, E. S. Trends and drivers of marine debris on the Atlantic coast of the United States 1997–2007. Mar. Pollut. Bull. 60, 1231–1242 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Day, R. H., Shaw, D. G. & Ignell, S. E. in Proceedings of the Second International Conference on Marine Debris (eds Shomura, R. S. & Godfrey, M. L.) 185–211 (U.S. Department of Commerce, 1990).

  • 44.

    Pham, C. K. et al. Marine litter distribution and density in European seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 45.

    Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Zhu, X. et al. Identification of microfibers in the environment using multiple lines of evidence. Environ. Sci. Technol. 53, 11877–11887 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Primpke, S., Lorenz, C., Rascher-Friesenhausen, R. & Gerdts, G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal. Methods 9, 1499–1511 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Morét-Ferguson, S. et al. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60, 1873–1878 (2010).

    Article 
    CAS 

    Google Scholar
     

  • 49.

    Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Ward, C. P., Armstrong, C. J., Walsh, A. N., Jackson, J. H. & Reddy, C. M. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon. Environ. Sci. Technol. Lett. 6, 669–674 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119, 12–22 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 57.

    Ward, C. P. & Reddy, C. M. Opinion: we need better data about the environmental persistence of plastic goods. Proc. Natl Acad. Sci. USA 117, 14618–14621 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Jahnke, A. et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ. Sci. Technol. Lett. 4, 85–90 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Bioplastics Magazine. The global bio-based polymer market in 2019–a revised view. Bioplastics Magazine https://www.bioplasticsmagazine.com/en/news/meldungen/20200127-The-global-bio-based-polymer-market-in-2019-A-revised-view.php (2020).

  • 61.

    Narayan, R. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. MRS Bull. 36, 716–721 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Folino, A., Karageorgiou, A., Calabrò, P. S. & Komilis, D. Biodegradation of wasted bioplastics in natural and industrial environments: a review. Sustainability 12, 6030 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 64.

    Zumstein, M. T., Narayan, R., Kohler, H.-P. E., McNeill, K. & Sander, M. Dos and do nots when assessing the biodegradation of plastics. Environ. Sci. Technol. 53, 9967–9969 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 65.

    Yang, Y. et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ. Sci. Technol. 49, 12080–12086 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Pagga, U., Schäfer, A., Müller, R.-J. & Pantke, M. Determination of the aerobic biodegradability of polymeric material in aquatic batch tests. Chemosphere 42, 319–331 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article 

    Google Scholar
     

  • 68.

    Narayan, R. in Soil Degradable Bioplastics for a Sustainable Modern Agriculture Ch. 2 (ed. Malinconico, M.) 23–34 (Springer, 2017).

  • 69.

    Harrison, J. P., Boardman, C., O’Callaghan, K., Delort, A.-M. & Song, J. Biodegradability standards for carrier bags and plastic films in aquatic environments: a critical review. R. Soc. Open Sci. 5, 171792 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 70.

    Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 71.

    Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 72.

    Stahel, W. R. Circular economy. Nature 531, 435–438 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 73.

    Ellen MacArthur Foundation. The new plastics economy: rethinking the future of plastics. Ellen MacArthur Foundation https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (2016).

  • 74.

    Zink, T. & Geyer, R. Circular economy rebound: circular economy rebound. J. Ind. Ecol. 21, 593–602 (2017).

    Article 

    Google Scholar
     

  • 75.

    Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 76.

    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Sintim, H. Y. & Flury, M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ. Sci. Technol. 51, 1068–1069 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 78.

    Wierckx, N. et al. Plastic waste as a novel substrate for industrial biotechnology: plastic waste as substrate for biotechnology. Microb. Biotechnol. 8, 900–903 (2015).

    Article 

    Google Scholar
     

  • 79.

    Wei, R. & Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 10, 1308–1322 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 80.

    Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 81.

    Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350–E4357 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 82.

    Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl Acad. Sci. USA 117, 25476–25485 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 84.

    Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 85.

    Goldstein, N. Quantifying Existing Food Waste Composting Infrastructure in the U.S. (BioCycle, 2019).

  • 86.

    International Solid Waste Association (ISWA). Waste and Climate Change: ISWA White Paper (International Solid Waste Association, 2009).

  • 87.

    Rodrigues, L. C. et al. The impact of improper materials in biowaste on the quality of compost. J. Clean. Prod. 251, 119601 (2020).

    Article 

    Google Scholar
     

  • 88.

    Bandini, F. et al. Fate of biodegradable polymers under industrial conditions for anaerobic digestion and aerobic composting of food waste. J. Polym. Environ. 28, 2539–2550 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 89.

    Taufik, D., Reinders, M. J., Molenveld, K. & Onwezen, M. C. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci. Total Environ. 705, 135820 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 90.

    Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 91.

    Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 92.

    Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 93.

    Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 94.

    Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 95.

    Thiounn, T. & Smith, R. C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 58, 1347–1364 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 96.

    Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37, 94A–101A (2003).

    Article 

    Google Scholar
     

  • 97.

    Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 1–14 (2021).

    Article 
    CAS 

    Google Scholar
     

  • 98.

    Al-Salem, S. M., Lettieri, P. & Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 99.

    Ignatyev, I. A., Thielemans, W. & Vander Beke, B. Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 100.

    Rogoff, M. J. & Ross, D. E. The future of recycling in the United States. Waste Manag. Res. 34, 181–183 (2016).

    Article 

    Google Scholar
     

  • 101.

    Waste Management. WM Report on Recycling (Waste Management, 2020).

  • 102.

    Zink, T. & Geyer, R. Material recycling and the myth of landfill diversion. J. Ind. Ecol. 23, 541–548 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 103.

    Britt, P. F. et al. Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (U.S. Department of Energy, 2019).

  • 104.

    Fullerton, D. & Wu, W. Policies for green design. J. Environ. Econ. Manag. 36, 131–148 (1998).

    Article 

    Google Scholar
     

  • 105.

    Allwood, J. M. Sustainable materials. Nat. Rev. Mater. 1, 15009 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 106.

    Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 11, 5324 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 107.

    Jakovcevic, A. et al. Charges for plastic bags: motivational and behavioral effects. J. Environ. Psychol. 40, 372–380 (2014).

    Article 

    Google Scholar
     

  • 108.

    Consumer Brands Association. Achieving America’s Recycling Future: Consumer Brands Association Position on the Optimal Recycling System (Consumer Brands Association, 2020).

  • 109.

    Coelho, P. M., Corona, B., ten Klooster, R. & Worrell, E. Sustainability of reusable packaging–Current situation and trends. Resour. Conserv. Recycl. X 6, 100037 (2020).


    Google Scholar
     

  • 110.

    Kuhn, S., Bravo Rebolledo E. L. & van Franeker, J. A. in Marine Anthropogenic Litter Ch. 4 (eds. Bergmann, M., Gutow, L., & Klages, M.) 75–115 (Springer Open, 2015).

  • 111.

    Fowler, C. Marine debris and northern fur seals: a case study. Mar. Pollut. Bull. 18, 326–335 (1987).

    Article 

    Google Scholar
     

  • 112.

    Nava, V. & Leoni, B. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res. 188, 116476 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 114.

    Goldstein, M. C. & Goodwin, D. S. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ 1, e184 (2013).

    Article 

    Google Scholar
     

  • 115.

    Kiessling, T., Gutow, L., Thiel, M. in Marine Anthropogenic Litter Ch. 6 (eds. Bergmann, M., Gutow, L., & Klages, M.) 141–181 (Springer Open, 2015).

  • 116.

    Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 117.

    de Stephanis, R., Giménez, J., Carpinelli, E., Gutierrez-Exposito, C. & Cañadas, A. As main meal for sperm whales: plastics debris. Mar. Pollut. Bull. 69, 206–214 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 118.

    Rochman, C. M., Kurobe, T., Flores, I. & Teh, S. J. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ. 493, 656–661 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 119.

    Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J. & Thompson, R. C. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr. Biol. 23, 2388–2392 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 120.

    Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 121.

    Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 122.

    Ogonowski, M., Schür, C., Jarsén, Å. & Gorokhova, E. The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS One 11, e0155063 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 123.

    Burns, E. E. & Boxall, A. B. A. Microplastics in the aquatic environment: evidence for or against adverse impacts and major knowledge gaps: microplastics in the environment. Environ. Toxicol. Chem. 37, 2776–2796 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 124.

    Hanke, U. M., Ward, C. P. & Reddy, C. M. Leveraging lessons learned from black carbon research to study plastics in the environment. Environ. Sci. Technol. 53, 6599–6600 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 125.

    Koelmans, A. A. et al. Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ. Sci. Technol. 51, 11513–11519 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 126.

    Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 838–838 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 127.

    Arthur, C., Baker, J. & Bamford, H. in Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris (eds Baker, C. J. & Bamford, H.) 49 (National Oceanic and Atmospheric Administration, 2009).

  • 128.

    Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 100, 70–81 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 129.

    Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 130.

    Filella, M. Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects. Environ. Chem. 12, 527–538 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 131.

    Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 132.

    ter Halle, A. et al. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 51, 13689–13697 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 133.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *