• Association of Plastic Manufacturers. Plastics — the facts 2020 (PlasticEurope, 2020).

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, uses, and fate of all plastics ever made. Sci. Adv. 3, 5 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    Article 

    Google Scholar
     

  • Li, J., Liu, H. & Chen, J. P. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 137, 362–374 (2018).

    Article 

    Google Scholar
     

  • Campos da Rocha, F. O., Martinez, S. T., Campos, V. P., da Rocha, G. O. & de Andrade, J. B. Microplastic pollution in Southern Atlantic marine waters: review of current trends, sources, and perspectives. Sci. Total Environ. 782, 146541 (2021).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Microplastics in soils: a review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. Total Environ. 748, 141368 (2020).

    Article 

    Google Scholar
     

  • Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article 

    Google Scholar
     

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article 

    Google Scholar
     

  • Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment (GESAMP, 2016). This study describes a systematic and comprehensive methodology to assess ocean and sea MP concentrations, their sources, transport and fate within the aquatic marine environment.

  • Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Sources, fate and effects of microplastics in the marine environment: a global assessment (GESAMP, 2015). This is a consolidated and strategic assessment of marine (aquatic) plastic pollution.

  • Bergmann, M., Tekman, M. & Gutow, L. Sea change for plastic pollution. Nature 544, 297 (2017). This paper presents the findings of LITTERBASE, the global collation of marine (aquatic) plastic pollution research.

    Article 

    Google Scholar
     

  • Karbalaei, S., Hanachi, P., Walker, T. R. & Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 25, 36046–36063 (2018).

    Article 

    Google Scholar
     

  • Karbalaei, S. et al. Abundance and characteristics of microplastics in commercial marine fish from Malaysia. Mar. Pollut. Bull. 148, 5–15 (2019).

    Article 

    Google Scholar
     

  • Wichmann, D., Delandmeter, P. & van Sebille, E. Influence of near-surface currents on the global dispersal of marine microplastic. JGR Ocean 124, 6086–6096 (2018).

    Article 

    Google Scholar
     

  • Rodrigues, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: what is known? Environ. Toxicol. Pharmacol. 72, 103239 (2019).

    Article 

    Google Scholar
     

  • Sebille, Evan et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15, 023003 (2020).

    Article 

    Google Scholar
     

  • Allen, S. et al. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun. 12, 7242 (2021). This is a remote-area atmospheric MP quantification and modelling study, illustrating marine sources relative to the specific study site and duration.

    Article 

    Google Scholar
     

  • Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Article 

    Google Scholar
     

  • Evangeliou, N. et al. Atmospheric transport, a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020). Together with Brahney et al. (2021), this study models the global atmospheric flux of MP and considers the uncertainty in atmospheric MP flux estimation.

    Article 

    Google Scholar
     

  • Materić, D., Ludewig, E., Brunner, D., Rochmann, T. & Holzinger, R. Nanoplastics transport to the remote, high-altitude Alps. Environ. Pollut. 288, 117697 (2021).

    Article 

    Google Scholar
     

  • van der Does, M., Knippertz, P., Zschenderlein, P., Harrison, R. G. & Stuut, J.-B. W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 4, eaau2768 (2018).

    Article 

    Google Scholar
     

  • Ganguly, M. & Ariya, P. A. Ice nucleation of model nano-micro plastics: a novel synthetic protocol and the influence of particle capping at diverse atmospheric. ACS Earth Space Chem. 3, 1729–1739 (2019).

    Article 

    Google Scholar
     

  • Revell, L. et al. Direct radiative effects of airborne microplastics. Nature 598, 462–467 (2021). This paper presents the first modelling assessment of atmospheric MP on radiative forcing and the potential resultant atmospheric heating and cooling effects.

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Current status and future perspectives of microplastic pollution in typical cryospheric regions. Earth Sci. Rev. 226, 103924 (2022).

    Article 

    Google Scholar
     

  • Lebedev, A. T. et al. Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants. Environ. Pollut. 241, 616–625 (2018).

    Article 

    Google Scholar
     

  • Vergara-Temprado, J. et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl Acad. Sci. USA 115, 2687–2692 (2018).

    Article 

    Google Scholar
     

  • Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017). This is a detailed assessment of the human health potential implications associated with MP exposure.

    Article 

    Google Scholar
     

  • Galloway, T. S. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 343–366 (Springer, 2015).

  • Huerta Lwanga, E. et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 7, 14071 (2017).

    Article 

    Google Scholar
     

  • Weithmann, N. et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4, eaap8060 (2018).

    Article 

    Google Scholar
     

  • Amato-Lourenço, L. F. et al. An emerging class of air pollutants: potential effects of microplastics to respiratory human health? Sci. Total Environ. 749, 141676 (2020).

    Article 

    Google Scholar
     

  • Walker, T. R. (Micro)plastics and the UN Sustainable Development Goals. Curr. Opin. Green Sustain. Chem. 30, 100497 (2021).

    Article 

    Google Scholar
     

  • Hann, S. et al. Investigating options for reducing releases in the aquatic environment of microplastics emitted by (but not intentionally added in) product (Eunomia, 2018).

  • Lots, F. A. E., Behrens, P., Vijver, M. G., Horton, A. A. & Bosker, T. A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment. Mar. Pollut. Bull. 123, 219–226 (2017).

    Article 

    Google Scholar
     

  • Lehmann, M., Oehlschlägel, L. M., Häusl, F. P., Held, A. & Gekle, S. Ejection of marine microplastics by raindrops: a computational and experimental study. Micropl. Nanopl. 1, 18 (2021).

    Article 

    Google Scholar
     

  • Ferrero, L. et al. Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: an emerging role of air–sea interaction. Sci. Total Environ. 9, 153709 (2022).

    Article 

    Google Scholar
     

  • Allen, S. et al. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 15, e0232746 (2020). This study presents quantitative characterization of MP in coastal atmospheric air mass, considering the ocean as a source of atmospheric MP.

    Article 

    Google Scholar
     

  • Trainic, M. et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Env. 1, 64 (2020).

    Article 

    Google Scholar
     

  • Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019). This comprehensive study presents MP particle quantitative characterization in snow deposited on Arctic ice floes and remote areas in Europe.

    Article 

    Google Scholar
     

  • Lusher, A. L., Hollman, P. C. H. & Mendoza-Hill, J. J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety (FAO, 2017).

  • Rezaei, M., Riksen, M. J. P. M., Sirjani, E., Sameni, A. & Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 669, 273–281 (2019).

    Article 

    Google Scholar
     

  • Bullard, J. E., Ockelford, A., O’Brien, P. & McKenna Neuman, C. Preferential transport of microplastics by wind. Atmos. Environ. 245, 118038 (2021).

    Article 

    Google Scholar
     

  • Richie, H. & Roser, M. Land use. Our World in Data https://ourworldindata.org/land-use (2013).

  • Vogelsang, C. et al. Microplastics in road dust — characteristics, pathways and measures (Norwegian Institute for Water Research, 2019).

  • Baensch-Baltruschat, B., Kocher, B., Stock, F. & Reifferscheid, G. Tyre and road wear particles (TRWP) — a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 733, 137823 (2020).

    Article 

    Google Scholar
     

  • Verschoor, A., de Poorter, L., Dröge, R., Kuenen, J. & de Valk, E. Emission of microplastics and potential mitigation measures (RIVM, 2016).

  • Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    Article 

    Google Scholar
     

  • Kapp, K. J. & Miller, R. Z. Electric clothes dryers: an underestimated source of microfiber pollution. PLoS ONE 15, e0239165 (2020).

    Article 

    Google Scholar
     

  • Brien, S. O. et al. Airborne emissions of microplastic fibres from domestic laundry dryers. Sci. Total Environ. 747, 141175 (2020).

    Article 

    Google Scholar
     

  • Vega, G. C., Gross, A. & Birkved, M. The impacts of plastic products on air pollution-a simulation study for advanced life cycle inventories of plastics covering secondary microplastic production. Sustain. Prod. Consum. 28, 848–865 (2021).

    Article 

    Google Scholar
     

  • He, D. & Luo, Y. Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges (Springer, 2020).

  • Xu, C. et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? J. Hazard. Mater. 400, 123228 (2020).

    Article 

    Google Scholar
     

  • Thinh, T. Q., Tran, T., Sang, N. & Viet, T. Q. Preliminary assessment on the microplastic contamination in the atmospheric fallout in the Phuoc Hiep landfill, Cu Chi, Ho Chi Minh city. Vietnam J. Sci. Technol. Eng. 62, 83–89 (2020).

    Article 

    Google Scholar
     

  • Dris, R. et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 221, 453–458 (2017).

    Article 

    Google Scholar
     

  • Li, Y. et al. Airborne fiber particles: types, size and concentration observed in Beijing. Sci. Total Environ. 705, 135967 (2020).

    Article 

    Google Scholar
     

  • Liu, K. et al. Global inventory of atmospheric fibrous microplastics input into the ocean: an implication from the indoor origin. J. Hazard. Mater. 400, 123223 (2020).

    Article 

    Google Scholar
     

  • Cabrera, M. et al. A new method for microplastic sampling and isolation in mountain glaciers: a case study of one antisana glacier, Ecuadorian Andes. Case Stud. Chem. Environ. Eng. 2, 100051 (2020).

    Article 

    Google Scholar
     

  • Ambrosini, R. et al. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ. Pollut. 253, 297–301 (2019).

    Article 

    Google Scholar
     

  • Brahney, J., Hallerud, M., Heim, E., Hahnenbergere, M. & Sukumaran, S. Plastic rain in protected areas of the United States. Science 368, 1257–1260 (2020).

    Article 

    Google Scholar
     

  • Kim, S.-K. et al. Importance of seasonal sea ice in the western Arctic Ocean to the Arctic and global microplastic budgets. J. Hazard. Mater. 418, 125971 (2021).

    Article 

    Google Scholar
     

  • Huntington, A. et al. A first assessment of microplastics and other anthropogenic particles in Hudson Bay and the surrounding eastern Canadian Arctic waters of Nunavut. Facets 5, 432–454 (2020).

    Article 

    Google Scholar
     

  • Materić, D. et al. Micro- and nanoplastics in Alpine snow — a new method for chemical identification and quantification in the nanogram range. Environ. Sci. Technol. 54, 2353–2359 (2020). This work presents a novel method for analysis of NP in environmental samples.

    Article 

    Google Scholar
     

  • Abbasi, S., Turner, A., Hoseini, M. & Amiri, H. Microplastics in the Lut and Kavir Deserts, Iran. Environ. Sci. Technol. 55, 5993–6000 (2021).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Microplastics in glaciers of the Tibetan Plateau: evidence for the long-range transport of microplastics. Sci. Total Environ. 758, 143634 (2021).

    Article 

    Google Scholar
     

  • Bergmann, M., Gutow, L. & Klages, M. Marine Anthropogenic Litter (Springer, 2015).

  • He, D., Bristow, K., Filipović, V., Lv, J. & He, H. Microplastics in terrestrial ecosystems: a scientometric analysis. Sustainability 12, 8739 (2020).

    Article 

    Google Scholar
     

  • González-Pleiter, M. et al. Occurrence and transport of microplastics sampled within and above the planetary boundary layer. Sci. Total Environ. 761, 143213 (2021).

    Article 

    Google Scholar
     

  • Wang, X. et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J. Hazard. Mater. 389, 121846 (2020).

    Article 

    Google Scholar
     

  • Liu, K. et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 53, 10612–10619 (2019). This work quantifies marine-atmospheric MP concentrations and models their atmospheric transport from potential terrestrial sources.

    Article 

    Google Scholar
     

  • Ding, Y. et al. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall. Atmos. Environ. 253, 118389 (2021).

    Article 

    Google Scholar
     

  • Modini, R. L., Harris, B. & Ristovski, Z. The organic fraction of bubble-generated, accumulation mode sea spray aerosol (SSA). Atmos. Chem. Phys. 10, 2867–2877 (2010).

    Article 

    Google Scholar
     

  • Cornwell, G. C. et al. Ejection of dust from the ocean as a potential source of marine ice nucleating particles. J. Geophys. Res. Atmos. 125, 0–3 (2020).

    Article 

    Google Scholar
     

  • Lehmann, M. & Gekle, S. in MICRO 2020 (eds Baztan, J. et al.) 334143 (Springer, 2020).

  • Abbasi, S. et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 244, 153–164 (2019). This paper quantifies atmospheric MP in a city along the coastal environment of the Persian Gulf.

    Article 

    Google Scholar
     

  • Dris, R., Gasperi, J., Saad, M., Mirande, C. & Tassin, B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar. Pollut. Bull. 104, 290–293 (2016). This is seminal research on atmospheric MP, quantifying MP fibre deposition in Paris.

    Article 

    Google Scholar
     

  • Dris, R., Gasperi, J. & Tassin, B. in Freshwater Microplastics: The Handbook of Environmental Chemistry (eds Lambert, S. & Wagber, M.) 69–83 (Springer, 2018).

  • Boucher, J. & Friot, D. Primary microplastics in the oceans: a global evaluation of sources (IUCN, 2017).

  • Liss, P. S. Microplastics: all up in the air? Mar. Pollut. Bull. 153, 110952 (2020).

    Article 

    Google Scholar
     

  • Garside, M. Production of plastics worldwide from 1950 to 2018 (Statista, 2019).

  • Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article 

    Google Scholar
     

  • Sun, H., Jiao, R. & Wang, D. The difference of aggregation mechanism between microplastics and nanoplastics: role of Brownian motion and structural layer force. Environ. Pollut. 268, 115942 (2021).

    Article 

    Google Scholar
     

  • Fotopoulou, K. N. & Karapanagioti, H. K. Surface properties of beached plastic pellets. Mar. Environ. Res. 81, 70–77 (2012).

    Article 

    Google Scholar
     

  • dos Santos Galvão, L., Fernandes, E. M. S., Ferreira, R. R., dos Santos Rosa, D. & Wiebeck, H. Critical steps for microplastics characterization from the atmosphere. J. Hazard. Mater. 424, 127668 (2022).

    Article 

    Google Scholar
     

  • Chen, G., Fu, Z., Yang, H. & Wang, J. An overview of analytical methods for detecting microplastics in the atmosphere. Trends Anal. Chem. 130, 115981 (2020).

    Article 

    Google Scholar
     

  • Primpke, S., Fischer, M., Lorenz, C., Gerdts, G. & Scholz-Böttcher, B. M. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics. Anal. Bioanal. Chem. 412, 8283–8298 (2020).

    Article 

    Google Scholar
     

  • Song, Y. K. et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209 (2015).

    Article 

    Google Scholar
     

  • Knobloch, E. et al. Comparison of deposition sampling methods to collect airborne microplastics in Christchurch, New Zealand. Water Air Soil. Pollut. 232, 1–10 (2021).

    Article 

    Google Scholar
     

  • Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    Article 

    Google Scholar
     

  • Brahney, J. et al. A new sampler for the collection and retrieval of dry dust deposition. Aeolian Res. 45, 100600 (2020).

    Article 

    Google Scholar
     

  • Goßmann, I., Halbach, M. & Scholz-Böttcher, B. M. Car and truck tire wear particles in complex environmental samples — a quantitative comparison with “traditional” microplastic polymer mass loads. Sci. Total Environ. 773, 145667 (2021).

    Article 

    Google Scholar
     

  • Youssef, F., Erpul, G., Bogman, P., Cornelis, W. M. & Gabriels, D. Determination of efficiency of Vaseline slide and Wilson and Cooke sediment traps by wind tunnel experiments. Environ. Geol. 55, 741–750 (2008).

    Article 

    Google Scholar
     

  • Duce, R. A. in Chemical Oceanography Vol. 10 (Academic, 1989).

  • Berny, A., Deike, L., Séon, T. & Popinet, S. Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids 5, 33605 (2020).

    Article 

    Google Scholar
     

  • Sha, B., Johansson, J. H., Benskin, J. P., Cousins, I. T. & Salter, M. E. Influence of water concentrations of perfluoroalkyl acids (PFAAs) on their size-resolved enrichment in nascent sea spray aerosols. Environ. Sci. Technol. 55, 9489–9497 (2021).

    Article 

    Google Scholar
     

  • Fasching, J. L., Courant, R. A., Duce, R. A. & Piotrowicz, S. R. A new surface microlayer sampler utilizing the bubble microtome. J. Rech. Atmos. 8, 649–652 (1974). This paper describes a unique methodological design to sample aerosols and particles emitted from the marine surface and the marine microlayer.


    Google Scholar
     

  • Stokes, M. D. et al. A marine aerosol reference tank system as a breaking wave analogue for the production of foam and sea-spray aerosols. Atmos. Meas. Tech. 6, 1085–1094 (2013).

    Article 

    Google Scholar
     

  • Prather, K. A. et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 7550–7555 (2013). This is an assessment of ocean sea spray aerosols within a laboratory setting to unravel the complexity of chemical conentrations, flux and exchange.

    Article 

    Google Scholar
     

  • Schwaferts, C., Niessner, R., Elsner, M. & Ivleva, N. P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. Trends Anal. Chem. 112, 52–65 (2019).

    Article 

    Google Scholar
     

  • Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: classic methods and innovative detection techniques. Front. Toxicol. 3, 636640 (2021).

    Article 

    Google Scholar
     

  • Xu, J. L., Thomas, K. V., Luo, Z. & Gowen, A. A. FTIR and Raman imaging for microplastics analysis: state of the art, challenges and prospects. Trends Anal. Chem. 119, 115629 (2019).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. Comparative study of three sampling methods for microplastics analysis in seawater. Sci. Total Environ. 765, 144495 (2021).

    Article 

    Google Scholar
     

  • Cowger, W. Reporting requirements to increase the reproducibility and comparability of research on microplastics. Appl. Spectrosc. 74, 1066–1077 (2020).

    Article 

    Google Scholar
     

  • Brander, S. M. et al. Sampling and QA/QC: a guide for scientists investigating the occurrence of microplastics across matrices. Appl. Spectrosc. 74, 1099–1125 (2020).

    Article 

    Google Scholar
     

  • Ivleva, N. P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem. Rev. 121, 11886–11936 (2021).

    Article 

    Google Scholar
     

  • Cai, H. et al. Analysis of environmental nanoplastics: progress and challenges. Chem. Eng. J. 410, 128208 (2021).

    Article 

    Google Scholar
     

  • Materić, D., Ludewig, E., Xu, K., Röckmann, T. & Holzinger, R. Brief communication: analysis of organic matter in surface snow by PTR-MS — implications for dry deposition dynamics in the Alps. Cryosphere 13, 297–307 (2019).

    Article 

    Google Scholar
     

  • Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Guidelines for the monitoring and assessment of plastic litter in the ocean (GESAMP, 2019).

  • Wright, S. L., Gouin, T., Koelmans, A. A. & Scheuermann, L. Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Micropl. Nanopl. 1, 6 (2021). This is an assessment and comparison of field and laboratory methodologies of atmospheric MP research, considering blanks, sample contamination, preparation and analysis protocols.

    Article 

    Google Scholar
     

  • Wright, S. L., Ulke, J., Font, A., Chan, K. L. & Kelly, F. J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 136, 105411 (2020).

    Article 

    Google Scholar
     

  • Miyamoto, K., Taga, H., Akita, T. & Yamashita, C. Simple method to measure the aerodynamic size distribution of porous particles generated on lyophilizate for dry powder inhalation. Pharmaceutics 12, 976 (2020).

    Article 

    Google Scholar
     

  • Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46, 3060–3075 (2012).

    Article 

    Google Scholar
     

  • Zarfl, C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal. Bioanal. Chem. 411, 3743–3756 (2019).

    Article 

    Google Scholar
     

  • Stock, F. et al. in Plastics in the Aquatic Environment — Part I. The Handbook of Environmental Chemistry (eds Stock, F., Reifferscheid, G., Brennholt, N. & Kostianaia, E.) 13–42 (Springer, 2020).

  • Joint Group of Experts on Scientific Aspects of Marine Environmental Protection. Proceedings of the GESAMP International Workshop on assessing the risks associated with plastics and microplastics in the marine environment (GESAMP, 2020).

  • Rose, C. et al. Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmos. Chem. Phys. 21, 17185–17223 (2021).

    Article 

    Google Scholar
     

  • World Meteorological Organization. WMO Global Atmosphere Watch (GAW) implementation plan: 2016-2023 (WMO, 2017).

  • Laj, P. et al. A global analysis of climate-relevant aerosol properties retrieved from the network of GAW near-surface observatories. Atmos. Meas. Tech. 13, 4353–4392 (2020). This paper presents GAW programme research, with a comprehensive global assessment and representation of aerosol properties.

    Article 

    Google Scholar
     

  • Vet, R. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100 (2014).

    Article 

    Google Scholar
     

  • Prospero, J. M., Savoie, D. L. & Duce, R. A. Particulate nitrate and non-sea-salt sulfate in the boundary layer over the Pacific Ocean. Atmos. Environ. 20, 2074–2075 (1986).

    Article 

    Google Scholar
     

  • Gagosian, R. B., Peltzer, E. T. & Zafiriou, O. C. Atmospheric transport of continentally derived lipids to the tropical North Pacific. Nature 291, 312–314 (1981).

    Article 

    Google Scholar
     

  • Uematsu, M. et al. Transport of mineral aerosol from Asia over the North Pacific ocean. J. Geophys. Res. 88, 5343–5352 (1983).

    Article 

    Google Scholar
     

  • Uematsu, M., Duce, R. A. & Prospero, J. M. Deposition of atmospheric mineral particles in the North Pacific Ocean. J. Atmos. Chem. 3, 123–138 (1985). This paper is a presentation of marine-atmospheric particle deposition across the North Pacific Ocean as part of the international SEAREX Asian Dust Study Network.

    Article 

    Google Scholar
     

  • He, Y. & Mason, R. P. Comparison of reactive gaseous mercury measured by KCl-coated denuders and cation exchange membranes during the Pacific GEOTRACES GP15 expedition. Atmos. Environ. 244, 117973 (2021).

    Article 

    Google Scholar
     

  • Collaud Coen, M. et al. Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmos. Chem. Phys. 20, 8867–8908 (2020).

    Article 

    Google Scholar
     

  • Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017). This is an assessment of the anthropogenic versus crustal sourced aerosols in the North and South Atlantic Ocean as part of the Atlantic Meridional Transect programme.

    Article 

    Google Scholar
     

  • Kanitz, T., Ansmann, A., Engelmann, R. & Althausen, D. North–south cross-sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. J. Geophys. Res. Atmos. 118, 2643–2655 (2013).

    Article 

    Google Scholar
     

  • West, J. S. & Kimber, R. B. E. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 166, 4–17 (2015).

    Article 

    Google Scholar
     

  • Brosy, C. et al. Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmos. Meas. Tech. 10, 2773–2784 (2017).

    Article 

    Google Scholar
     

  • Weiss, L. et al. The missing ocean plastic sink: gone with the rivers. Science 373, 107–111 (2021).

    Article 

    Google Scholar
     

  • Sebille, E. V. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006 (2015).

    Article 

    Google Scholar
     

  • Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article 

    Google Scholar
     

  • Frias, J. P. G. L. & Nash, R. Microplastics: finding a consensus on the definition. Mar. Pollut. Bull. 138, 145–147 (2019).

    Article 

    Google Scholar
     

  • Kooi, M. & Koelmans, A. A. Simplifying microplastic via continuous probability distributions for size, shape,and density. Environ. Sci. Technol. Lett. 6, 551–557 (2019).

    Article 

    Google Scholar
     

  • Horton, A. A. & Dixon, S. J. Microplastics: an introduction to environmental transport processes. Wiley Interdiscip. Rev. Water 5, e1268 (2018).

    Article 

    Google Scholar
     

  • Hernandez, L. M., Yousefi, N. & Tufenkji, N. Are there nanoplastics in your personal care products? Environ. Sci. Technol. Lett. 4, 280–285 (2017).

    Article 

    Google Scholar
     

  • Hassan, B., Islam, G. & Anma, H. Applications of nanotechnology in textiles: a review. Adv. Res. Text. Eng. Open 4, 1038 (2019).


    Google Scholar
     

  • Mustafa, K., Kanwal, J. & Musaddiq, S. in Waste Recycling Technologies for Nanomaterials Manufacturing (eds Makhlouf, A. S. H. & Ali, G. A. M.) (Springer, 2021).

  • Scungio, M., Vitanza, T., Stabile, L., Buonanno, G. & Morawska, L. Characterization of particle emission from laser printers. Sci. Total Environ. 586, 623–630 (2017).

    Article 

    Google Scholar
     

  • Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article 

    Google Scholar
     

  • Kim, D. H., Lu, N., Ghaffari, R. & Rogers, J. A. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. npg Asia Mater. 4, 1–9 (2012).

    Article 

    Google Scholar
     

  • Waldman, W. R. & Rillig, M. C. Microplastic research should embrace the complexity of secondary particles. Environ. Sci. Technol. 54, 7751–7753 (2020).

    Article 

    Google Scholar
     

  • Hadri, H., Gigault, J., Maxit, B., Grassl, B. & Reynard, S. Nanoplastic from mechanically degrated primary and secondary microplastics for environmental assessments. NanoImpact 17, 100206 (2019).

    Article 

    Google Scholar
     

  • Zhang, W., Dong, Z., Zhu, L., Hou, Y. & Qiu, Y. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy. ACS Nano 14, 7920–7926 (2020).

    Article 

    Google Scholar
     

  • Verschoor, A., Poorter, L. de, Roex, E. & Bellert, B. Quick scan and prioritization of microplastic sources and emissions (RIVM, 2014).

  • Browne, M. A. in Marine Anthropogenic Litter (eds Bergmann, M., Klages, M. & Gutow, L.) 229–244 (Springer, 2015).

  • Simmerman, C. B. & Coleman Wasik, J. K. The effect of urban point source contamination on microplastic levels in water and organisms in a cold-water stream. Limnol. Oceanogr. Lett. 5, 137–146 (2020).

    Article 

    Google Scholar
     

  • Su, L., Nan, B., Craig, N. J. & Pettigrove, V. Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: implications for diffuse pollution. Chemosphere 252, 126567 (2020).

    Article 

    Google Scholar
     

  • Campanale, C. et al. Microplastics pollution in the terrestrial environments: poorly known diffuse sources and implications for plants. Sci. Total Environ. 805, 150431 (2022).

    Article 

    Google Scholar
     

  • Scheurer, M. & Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 52, 3591–3598 (2018).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.