• Berthoud, H. R., Morrison, C. D. & Münzberg, H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol. Behav. 222, 112959. https://doi.org/10.1016/j.physbeh.2020.112959 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopp, W. How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 12, 2221–2236. https://doi.org/10.2147/DMSO.S216791 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, H. et al. Modulation of microbiota-gut-brain axis by berberine resulting in improved metabolic status in high-fat diet-fed rats. Obes. Facts 9, 365–378. https://doi.org/10.1159/000449507 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Bas, J. M. et al. Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. Int. J. Obes. (Lond.) 42, 746–754. https://doi.org/10.1038/ijo.2017.284 (2018).

    Article 

    Google Scholar
     

  • Dunphy-Doherty, F. et al. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis. Brain Behav. Immun. 68, 261–273. https://doi.org/10.1016/j.bbi.2017.10.024 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jimenez-Chillaron, J. C. et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58, 460–468. https://doi.org/10.2337/db08-0490 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096. https://doi.org/10.1016/j.cell.2010.12.008 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pentinat, T., Ramon-Krauel, M., Cebria, J., Diaz, R. & Jimenez-Chillaron, J. C. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151, 5617–5623. https://doi.org/10.1210/en.2010-0684 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Huypens, P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet. 48, 497–499. https://doi.org/10.1038/ng.3527 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ng, S. F. et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966. https://doi.org/10.1038/nature09491 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Korgan, A. C., O’Leary, E., King, J. L., Weaver, I. C. G. & Perrot, T. S. Effects of paternal high-fat diet and rearing environment on maternal investment and development of defensive responses in the offspring. Psychoneuroendocrinology 91, 20–30. https://doi.org/10.1016/j.psyneuen.2018.02.010 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, H. Y. et al. Paternal obesity impairs hepatic gluconeogenesis of offspring by altering Igf2/H19 DNA methylation. Mol. Cell Endocrinol. https://doi.org/10.1016/j.mce.2021.111264 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pepin, A. S., Lafleur, C., Lambrot, R., Dumeaux, V. & Kimmins, S. Sperm histone H3 lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Mol. Metab. 59, 101463. https://doi.org/10.1016/j.molmet.2022.101463 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chleilat, F. et al. Paternal high protein diet modulates body composition, insulin sensitivity, epigenetics, and gut microbiota intergenerationally in rats. FASEB J. 35, e21847. https://doi.org/10.1096/fj.202100198RR (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bodden, C. et al. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB J. 36, e21981. https://doi.org/10.1096/fj.202100920RR (2022).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fullston, T. et al. Parental Obesity: Intergenerational Programming and Consequences 105–131 (Springer, 2016).

    Book 

    Google Scholar
     

  • Conine, C. C. & Rando, O. J. Soma-to-germline RNA communication. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00412-1 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00438-5 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Curley, J. P., Mashoodh, R. & Champagne, F. A. Epigenetics and the origins of paternal effects. Horm. Behav. 59, 306–314. https://doi.org/10.1016/j.yhbeh.2010.06.018 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mashoodh, R., Franks, B., Curley, J. P. & Champagne, F. A. Paternal social enrichment effects on maternal behavior and offspring growth. Proc. Natl. Acad. Sci. U.S.A. 109(Suppl 2), 17232–17238. https://doi.org/10.1073/pnas.1121083109 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mashoodh, R., Habrylo, I. B., Gudsnuk, K. M., Pelle, G. & Champagne, F. A. Maternal modulation of paternal effects on offspring development. Proc. Biol. Sci. 285, 20180118. https://doi.org/10.1098/rspb.2018.0118 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400. https://doi.org/10.1126/science.aad7977 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat. Rev. Genet. 17, 733–743. https://doi.org/10.1038/nrg.2016.106 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396. https://doi.org/10.1126/science.aad6780 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Grandjean, V. et al. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193. https://doi.org/10.1038/srep18193 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodgers, A. B., Morgan, C. P., Leu, N. A. & Bale, T. L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. U.S.A. 112, 13699–13704. https://doi.org/10.1073/pnas.1508347112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669. https://doi.org/10.1038/nn.3695 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javurek, A. B. et al. Consumption of a high-fat diet alters the seminal fluid and gut microbiomes in male mice. Reprod Fertil. Dev. 29, 1602–1612. https://doi.org/10.1071/RD16119 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 20, 535–540. https://doi.org/10.1038/s41556-018-0087-2 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaghan, B. L., Cowan, C. S. & Richardson, R. Treating generational stress: Effect of paternal stress on development of memory and extinction in offspring is reversed by probiotic treatment. Psychol. Sci. 27, 1171–1180. https://doi.org/10.1177/0956797616653103 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z. & Dominguez-Bello, M. G. The infant microbiome development: Mom matters. Trends Mol. Med. 21, 109–117. https://doi.org/10.1016/j.molmed.2014.12.002 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mueller, N. T. et al. Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci. Rep. 6, 23133. https://doi.org/10.1038/srep23133 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perez, M. F. & Lehner, B. Intergenerational and transgenerational epigenetic inheritance in animals. Nat. Cell Biol. 21, 143–151. https://doi.org/10.1038/s41556-018-0242-9 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336. https://doi.org/10.1038/nature10213 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strakovsky, R. S., Zhang, X., Zhou, D. & Pan, Y. X. Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J. Physiol. 589, 2707–2717. https://doi.org/10.1113/jphysiol.2010.203950 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, K. F., Cai, W., Xu, J. L. & Shi, W. Maternal high-fat diet programs Wnt genes through histone modification in the liver of neonatal rats. J. Mol. Endocrinol. 49, 107–114. https://doi.org/10.1530/JME-12-0046 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kreznar, J. H. et al. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep. 18, 1739–1750. https://doi.org/10.1016/j.celrep.2017.01.062 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Mahony, S. M., Clarke, G., Dinan, T. G. & Cryan, J. F. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle? Neuroscience 342, 37–54. https://doi.org/10.1016/j.neuroscience.2015.09.068 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Patrick, H. & Nicklas, T. A. A review of family and social determinants of children’s eating patterns and diet quality. J. Am. Coll. Nutr. 24, 83–92. https://doi.org/10.1080/07315724.2005.10719448 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Tseng, C. H. & Wu, C. Y. The gut microbiome in obesity. J. Formos Med. Assoc. 118(Suppl 1), S3–S9. https://doi.org/10.1016/j.jfma.2018.07.009 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jasarevic, E. & Bale, T. L. Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Front. Neuroendocrinol. 55, 100797. https://doi.org/10.1016/j.yfrne.2019.100797 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pronovost, G. N. & Hsiao, E. Y. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 50, 18–36. https://doi.org/10.1016/j.immuni.2018.11.016 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korgan, A. C. et al. Effects of paternal predation risk and rearing environment on maternal investment and development of defensive responses in the offspring. eNeuro 3, 0231. https://doi.org/10.1523/eneuro.0231-16.2016 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Champagne, D. L. et al. Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci. 28, 6037–6045. https://doi.org/10.1523/JNEUROSCI.0526-08.2008 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francis, D., Diorio, J., Liu, D. & Meaney, M. J. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286, 1155–1158. https://doi.org/10.1126/science.286.5442.1155 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854. https://doi.org/10.1038/nn1276 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Champagne, F. A., Francis, D. D., Mar, A. & Meaney, M. J. Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol. Behav. 79, 359–371. https://doi.org/10.1016/s0031-9384(03)00149-5 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Akers, K. G. et al. Social competitiveness and plasticity of neuroendocrine function in old age: Influence of neonatal novelty exposure and maternal care reliability. PLoS ONE 3, e2840. https://doi.org/10.1371/journal.pone.0002840 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birnie, A. K., Taylor, J. H., Cavanaugh, J. & French, J. A. Quality of maternal and paternal care predicts later stress reactivity in the cooperatively-breeding marmoset (Callithrix geoffroyi). Psychoneuroendocrinology 38, 3003–3014. https://doi.org/10.1016/j.psyneuen.2013.08.011 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Monk, C., Spicer, J. & Champagne, F. A. Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Dev. Psychopathol. 24, 1361–1376. https://doi.org/10.1017/S0954579412000764 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connors, E. J., Migliore, M. M., Pillsbury, S. L., Shaik, A. N. & Kentner, A. C. Environmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology 52, 153–167. https://doi.org/10.1016/j.psyneuen.2014.10.021 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Korgan, A. C., Vonkeman, J., Esser, M. J. & Perrot, T. S. An enhanced home cage modulates hypothalamic CRH-ir labeling in juvenile rats, with and without sub-threshold febrile convulsions. Dev. Psychobiol. 57, 374–381. https://doi.org/10.1002/dev.21300 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Caldji, C. et al. Maternal care during infancy regulates development of neural systems mediating expression of fearfulness in rat. Proc. Natl. Acad. Sci. U.S.A. 95, 5335–5340 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Francis, D. D., Champagne, F. A., Liu, D. & Meaney, M. J. Maternal care, gene expression, and the development of individual differences in stress reactivity. Ann. N. Y. Acad. Sci. 896, 66–84. https://doi.org/10.1111/j.1749-6632.1999.tb08106.x (1999).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liu, D., Diorio, J., Day, J. C., Francis, D. D. & Meaney, M. J. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 3, 799–806. https://doi.org/10.1038/77702 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49. https://doi.org/10.1146/annurev-neuro-072116-031347 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286. https://doi.org/10.1038/s41586-020-2745-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. M. et al. Microbiota control of maternal behavior regulates early postnatal growth of offspring. Sci. Adv. https://doi.org/10.1126/sciadv.abe6563 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gareau, M. G., Sherman, P. M. & Walker, W. A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503–514. https://doi.org/10.1038/nrgastro.2010.117 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myles, I. A. et al. Parental dietary fat intake alters offspring microbiome and immunity. J. Immunol. 191, 3200–3209. https://doi.org/10.4049/jimmunol.1301057 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Buffington, S. A. et al. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165, 1762–1775. https://doi.org/10.1016/j.cell.2016.06.001 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabouridis, P. S. & Pachnis, V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Investig. 125, 956–964. https://doi.org/10.1172/JCI76308 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoban, A. E. et al. The microbiome regulates amygdala-dependent fear recall. Mol. Psychiatry 23, 1134–1144. https://doi.org/10.1038/mp.2017.100 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bobel, T. S. et al. Less immune activation following social stress in rural vs. urban participants raised with regular or no animal contact, respectively. Proc. Natl. Acad. Sci. U.S.A. 115, 5259–5264. https://doi.org/10.1073/pnas.1719866115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275. https://doi.org/10.1113/jphysiol.2004.063388 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • du Sert, N. P. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sasaki, A., de Vega, W., Sivanathan, S., St-Cyr, S. & McGowan, P. O. Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring. Neuroscience 272, 92–101. https://doi.org/10.1016/j.neuroscience.2014.04.012 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sasaki, A., de Vega, W. C., St-Cyr, S., Pan, P. & McGowan, P. O. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 240, 1–12. https://doi.org/10.1016/j.neuroscience.2013.02.044 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wright, L. D., Hebert, K. E. & Perrot-Sinal, T. S. Periadolescent stress exposure exerts long-term effects on adult stress responding and expression of prefrontal dopamine receptors in male and female rats. Psychoneuroendocrinology 33, 130–142. https://doi.org/10.1016/j.psyneuen.2007.10.009 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624, https://doi.org/10.1038/ismej.2012.8 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamady, M. & Knight, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 19, 1141–1152. https://doi.org/10.1101/gr.085464.108 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27. https://doi.org/10.1186/s40168-017-0237-y (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rideout, J. R. et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2, e545. https://doi.org/10.7717/peerj.545 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618. https://doi.org/10.1038/ismej.2011.139 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490. https://doi.org/10.1371/journal.pone.0009490 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassis, C. M. et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6, e00037. https://doi.org/10.1128/mBio.00037-15 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 26, 27663. https://doi.org/10.3402/mehd.v26.27663 (2015).

    Article 

    Google Scholar
     

  • Berghanel, A., Heistermann, M., Schulke, O. & Ostner, J. Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals. Proc. Natl. Acad. Sci. U.S.A. 114, E10658–E10666. https://doi.org/10.1073/pnas.1707152114 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benito, E. et al. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment. Cell Rep. 23, 546–554. https://doi.org/10.1016/j.celrep.2018.03.059 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strzelewicz, A. R. et al. Access to a high resource environment protects against accelerated maturation following early life stress: A translational animal model of high, medium and low security settings. Horm. Behav. 111, 46–59. https://doi.org/10.1016/j.yhbeh.2019.01.003 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, R. et al. Maternal high fat diet alters gut microbiota of offspring and exacerbates DSS-induced colitis in adulthood. Front. Immunol. 9, 2608. https://doi.org/10.3389/fimmu.2018.02608 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chleilat, F., Schick, A. & Reimer, R. A. Microbiota changes in fathers consuming a high prebiotic fiber diet have minimal effects on male and female offspring in rats. Nutrients. https://doi.org/10.3390/nu13030820 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chleilat, F., Schick, A., Deleemans, J. M. & Reimer, R. A. Paternal methyl donor supplementation in rats improves fertility, physiological outcomes, gut microbial signatures and epigenetic markers altered by high fat/high sucrose diet. Int. J. Mol. Sci. 22, 689. https://doi.org/10.3390/ijms22020689 (2021).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Cambronel, M. et al. Influence of catecholamines (epinephrine/norepinephrine) on biofilm formation and adhesion in pathogenic and probiotic strains of Enterococcus faecalis. Front. Microbiol. 11, 1501. https://doi.org/10.3389/fmicb.2020.01501 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halang, P. et al. Response of Vibrio cholerae to the catecholamine hormones epinephrine and norepinephrine. J. Bacteriol. 197, 3769–3778. https://doi.org/10.1128/JB.00345-15 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, L. et al. Maternal exercise improves high-fat diet-induced metabolic abnormalities and gut microbiota profiles in mouse dams and offspring. Front. Cell Infect. Microbiol. 10, 292. https://doi.org/10.3389/fcimb.2020.00292 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jasarevic, E., Howard, C. D., Misic, A. M., Beiting, D. P. & Bale, T. L. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci. Rep. 7, 44182. https://doi.org/10.1038/srep44182 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267. https://doi.org/10.1126/science.1223813 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243. https://doi.org/10.1096/fj.12-224048 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Vickers, M. H. Developmental programming and transgenerational transmission of obesity. Ann. Nutr. Metab. 64(Suppl 1), 26–34. https://doi.org/10.1159/000360506 (2014).

    MathSciNet 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735. https://doi.org/10.1136/gutjnl-2012-303839 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wu, W. et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front. Microbiol. 8, 1804. https://doi.org/10.3389/fmicb.2017.01804 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labarta-Bajo, L. et al. CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proc. Natl. Acad. Sci. U.S.A. 117, 24998–25007. https://doi.org/10.1073/pnas.2003656117 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grondin, J. et al. Protective effects of Akkermansia muciniphila on intestinal barrier function and inflammation. J. Can. Assoc. Gastroenterol. 3, 93–94. https://doi.org/10.1093/jcag/gwz047.218 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Ramanan, D. et al. An immunologic mode of multigenerational transmission governs a gut treg setpoint. Cell 181, 1276–1290. https://doi.org/10.1016/j.cell.2020.04.030 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 25, 1096–1103. https://doi.org/10.1038/s41591-019-0495-2 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U.S.A. 110, 9066–9071. https://doi.org/10.1073/pnas.1219451110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bo, T. B. et al. Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. J. Steroid Biochem. Mol. Biol. 198, 105602. https://doi.org/10.1016/j.jsbmb.2020.105602 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mangin, I. et al. Oral administration of viable Bifidobacterium pseudolongum strain Patronus modified colonic microbiota and increased mucus layer thickness in rat. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy177 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lugli, G. A. et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.03065-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Javurek, A. B. et al. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci. Rep. 6, 23027. https://doi.org/10.1038/srep23027 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raad, G. et al. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. Elife https://doi.org/10.7554/eLife.61736 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernhardt, L. et al. A genome-wide transcriptomic analysis of embryos fathered by obese males in a murine model of diet-induced obesity. Sci. Rep. 11, 1979. https://doi.org/10.1038/s41598-021-81226-3 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96. https://doi.org/10.1038/nn.3594 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bohacek, J. et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol. Psychiatry 20, 621–631. https://doi.org/10.1038/mp.2014.80 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 1873–1878. https://doi.org/10.1073/pnas.1321195111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventura-Junca, P. et al. In vitro fertilization (IVF) in mammals: Epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol. Res. 48, 68. https://doi.org/10.1186/s40659-015-0059-y (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Veen, R., Abrous, D. N., de Kloet, E. R., Piazza, P. V. & Koehl, M. Impact of intra- and interstrain cross-fostering on mouse maternal care. Genes Brain Behav. 7, 184–192. https://doi.org/10.1111/j.1601-183X.2007.00337.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Spear, L. P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 24, 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.