Impact of micro-environmental factors on survival, reproduction and distribution of Oncomelania hupensis snails | Infectious Diseases of Poverty
  • Webster JP, Molyneux DH, Hotez PJ, Fenwick A. The contribution of mass drug administration to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130434.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hotez PJ, Fenwick A, Savioli L, Molyneux DH. Rescuing the bottom billion through control of neglected tropical diseases. Lancet. 2009;373:1570–5.

    PubMed 
    Article 

    Google Scholar
     

  • Gatimu SM, Kimani RW. Does mass drug administration of azithromycin reduce child mortality? Lancet Glob Health. 2021;9:e1485–6.

    PubMed 
    Article 

    Google Scholar
     

  • Oldenburg CE, Arzika AM, Amza A, Gebre T, Kalua K, Mrango Z, et al. Mass azithromycin distribution to prevent childhood mortality: a pooled analysis of cluster-randomized trials. Am J Trop Med Hyg. 2019;100:691–5.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bogoch II, Utzinger J, Lo NC, Andrews JR. Antibacterial mass drug administration for child mortality reduction: opportunities, concerns, and possible next steps. PLoS Negl Trop Dis. 2019;13: e0007315.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tavul L, Laman M, Howard C, Kotty B, Samuel A, Bjerum C, et al. Safety and efficacy of mass drug administration with a single-dose triple-drug regimen of albendazole + diethylcarbamazine + ivermectin for lymphatic filariasis in Papua New Guinea: an open-label, cluster-randomised trial. PLoS Negl Trop Dis. 2022;16: e0010096.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jambulingam P, Subramanian S, Krishnamoorthy K, Supali T, Fischer P, Dubray C, et al. Country reports on practical aspects of conducting large-scale community studies of the tolerability of mass drug administration with ivermectin/diethylcarbamazine/albendazole for lymphatic filariasis. Am J Trop Med Hyg. 2022;tpmd210898.

  • Orive G, Lertxundi U. Mass drug administration: time to consider drug pollution? Lancet. 2020;395:1112–3.

    PubMed 
    Article 

    Google Scholar
     

  • Smits HL. Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther. 2009;7:37–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verlicchi P, Al Aukidy M, Zambello E. What have we learned from worldwide experiences on the management and treatment of hospital effluent?—an overview and a discussion on perspectives. Sci Total Environ. 2015;514:467–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grenni P, Ancona V, Barra CA. Ecological effects of antibiotics on natural ecosystems: a review. Microchem J. 2018;136:25–39.

    CAS 
    Article 

    Google Scholar
     

  • Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis. 2002;8:347–54.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Littmann J, Viens AM, Silva DS. The Super-Wicked Problem of Antimicrobial Resistance. In: Jamrozik E, Selgelid M, editors. Ethics and drug resistance: collective responsibility for global public health. Cham: Springer International Publishing; 2020; p. 421–43. https://doi.org/10.1007/978-3-030-27874-8_26.

  • O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. London, UK; 2016 May p. 80. Available from: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.

  • Baquero F, Martínez J-L, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 2008;19:260–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis. 2013;13:155–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bürgmann H, Frigon D, H Gaze W, M Manaia C, Pruden A, Singer AC, et al. Water and sanitation: an essential battlefront in the war on antimicrobial resistance. FEMS Microbiol Ecol. 2018;94.

  • Schachter J, West SK, Mabey D, Dawson CR, Bobo L, Bailey R, et al. Azithromycin in control of trachoma. Lancet. 1999;354:630–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mitjà O, Houinei W, Moses P, Kapa A, Paru R, Hays R, et al. Mass treatment with single-dose azithromycin for yaws. N Engl J Med. 2015;372:703–10.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Marks M, Vahi V, Sokana O, Chi K-H, Puiahi E, Kilua G, et al. Impact of community mass treatment with azithromycin for trachoma elimination on the prevalence of yaws. PLoS Negl Trop Dis. 2015;9: e0003988.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Skalet AH, Cevallos V, Ayele B, Gebre T, Zhou Z, Jorgensen JH, et al. Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: a cluster-randomized clinical trial. PLoS Med. 2010;7: e1000377.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leach AJ, Shelby-James TM, Mayo M, Gratten M, Laming AC, Currie BJ, et al. A prospective study of the impact of community-based azithromycin treatment of trachoma on carriage and resistance of Streptococcus pneumoniae. Clin Infect Dis. 1997;24:356–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seidman JC, Coles CL, Silbergeld EK, Levens J, Mkocha H, Johnson LB, et al. Increased carriage of macrolide-resistant fecal E. coli following mass distribution of azithromycin for trachoma control. Int J Epidemiol. 2014;43:1105–13.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seidman JC, Johnson LB, Levens J, Mkocha H, Muñoz B, Silbergeld EK, et al. Longitudinal comparison of antibiotic resistance in diarrheagenic and non-pathogenic escherichia coli from young Tanzanian children. Front Microbiol. 2016;7:1420.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Brien KS, Emerson P, Hooper PJ, Reingold AL, Dennis EG, Keenan JD, et al. Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review. Lancet Infect Dis. 2019;19:e14-25.

    PubMed 
    Article 

    Google Scholar
     

  • Doan T, Arzika AM, Hinterwirth A, Maliki R, Zhong L, Cummings S, et al. Macrolide resistance in MORDOR I—a cluster-randomized trial in niger. N Engl J Med. 2019;380:2271–3.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doan T, Worden L, Hinterwirth A, Arzika AM, Maliki R, Abdou A, et al. Macrolide and nonmacrolide resistance with mass azithromycin distribution. N Engl J Med. 2020;383:1941–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14:176–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Evans JR, Solomon AW, Kumar R, Perez Á, Singh BP, Srivastava RM, et al. Antibiotics for trachoma. Cochrane Database Syst Rev. 2019;9(9):CD001860.

    PubMed 

    Google Scholar
     

  • Poddighe D. Macrolide resistance and longer-term assessment of azithromycin in MORDOR I. N Engl J Med. 2019;381:2184.

    PubMed 
    Article 

    Google Scholar
     

  • Olveda DU, McManus DP, Ross AGP. Mass drug administration and the global control of schistosomiasis: successes, limitations and clinical outcomes. Curr Opin Infect Dis. 2016;29:595–608.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vercruysse J, Levecke B, Prichard R. Human soil-transmitted helminths: implications of mass drug administration. Curr Opin Infect Dis. 2012;25:703–8.

    PubMed 
    Article 

    Google Scholar
     

  • Fissiha W, Kinde MZ. Anthelmintic resistance and its mechanism: a review. Infect Drug Resist. 2021;14:5403–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moser W, Schindler C, Keiser J. Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ. 2017;358: j4307.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol. 2004;20:469–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • von Seidlein L, Greenwood BM. Mass administrations of antimalarial drugs. Trends Parasitol. 2003;19:452–60.

    Article 

    Google Scholar
     

  • World Health Organization. Consideration of mass drug administration for the containment of artemisinin-resistant malaria in the Greater Mekong subregion: report of a consensus meeting, 27–28 September 2010, Geneva, Switzerland [Internet]. World Health Organization; 2011 p. 40. Available from: https://apps.who.int/iris/handle/10665/44605.

  • White NJ. Does antimalarial mass drug administration increase or decrease the risk of resistance? Lancet Infect Dis. 2017;17:e15-20.

    PubMed 
    Article 

    Google Scholar
     

  • Zuber JA, Takala-Harrison S. Multidrug-resistant malaria and the impact of mass drug administration. Infect Drug Resist. 2018;11:299–306.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eisele TP. Mass drug administration can be a valuable addition to the malaria elimination toolbox. Malar J. 2019;18:281.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E. Fecal colonization with extended-spectrum beta-lactamase-producing enterobacteriaceae and risk factors among healthy individuals: a systematic review and metaanalysis. Clin Infect Dis. 2016;63:310–8.

    PubMed 
    Article 

    Google Scholar
     

  • Berendes D, Knee J, Sumner T, Capone D, Lai A, Wood A, et al. Gut carriage of antimicrobial resistance genes among young children in urban Maputo, Mozambique: associations with enteric pathogen carriage and environmental risk factors. PLoS ONE. 2019;14: e0225464.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Robb K, Null C, Teunis P, Yakubu H, Armah G, Moe CL. Assessment of fecal exposure pathways in low-income urban neighborhoods in Accra, Ghana: rationale, design, methods, and key findings of the SaniPath study. Am J Trop Med Hyg. 2017;97:1020–32.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torres NF, Chibi B, Kuupiel D, Solomon VP, Mashamba-Thompson TP, Middleton LE. The use of non-prescribed antibiotics; prevalence estimates in low-and-middle-income countries. A systematic review and meta-analysis. Arch Public Health. 2021;79:2.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fletcher S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med. 2015;20:243–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.

    PubMed 
    Article 

    Google Scholar
     

  • Zainab SM, Junaid M, Xu N, Malik RN. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020;187: 116455.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States 2013. [Internet]. US Department of Health and Human Services; 2013 [cited 2022 Jan 10]. Available from: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.

  • World Health Organization E. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. [Internet]. World Health Organization; [cited 2022 Jan 10]. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.

  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.

    CAS 
    Article 

    Google Scholar
     

  • Berendes D, Kirby A, Brown J, Wester AL. Human faeces-associated extended-spectrum β-lactamase-producing Escherichia coli discharge into sanitation systems in 2015 and 2030: a global and regional analysis. Lancet Planet Health. 2020;4:e246–55.

    PubMed 
    Article 

    Google Scholar
     

  • Luke DR, Foulds G. Disposition of oral azithromycin in humans. Clin Pharmacol Therap. 1997;61:641–8.

    CAS 
    Article 

    Google Scholar
     

  • Marriner SE, Morris DL, Dickson B, Bogan JA. Pharmacokinetics of albendazole in man. Eur J Clin Pharmacol. 1986;30:705–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P. Pharmacokinetics of artemisinin-type compounds. Clin Pharmacokinet. 2000;39:255–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of ivermectin in humans—a mini-review. AAPS J. 2008;10:42–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Patzschke K, Pütter J, Wegner LA, Horster FA, Diekmann HW. Serum concentrations and renal excretion in humans after oral administration of praziquantel–results of three determination methods. Eur J Drug Metab Pharmacokinet. 1979;4:149–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singer AC, Shaw H, Rhodes V, Hart A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. 2016;7:1728.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen C-E, Zhang H, Ying G-G, Zhou L-J, Jones KC. Passive sampling: a cost-effective method for understanding antibiotic fate, behaviour and impact. Environ Int. 2015;85:284–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol. 2010;44:3468–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmed MB, Zhou JL, Ngo HH, Guo W. Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ. 2015;532:112–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. 2013;93:1268–87.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrios RE, Khuntia HK, Bartelt-Hunt SL, Gilley JE, Schmidt AM, Snow DD, et al. Fate and transport of antibiotics and antibiotic resistance genes in runoff and soil as affected by the timing of swine manure slurry application. Sci Total Environ. 2020;712: 136505.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Montealegre MC, Roy S, Böni F, Hossain MI, Navab-Daneshmand T, Caduff L, et al. Risk factors for detection, survival, and growth of antibiotic-resistant and pathogenic Escherichia coli in household soils in rural Bangladesh. Appl Environ Microbiol. 2018;84:e01978-e2018.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berendes DM, Yang PJ, Lai A, Hu D, Brown J. Estimation of global recoverable human and animal faecal biomass. Nat Sustain. 2018;1:679–85.

    Article 

    Google Scholar
     

  • Capone D, Berendes D, Cumming O, Holcomb D, Knee J, Konstantinidis KT, et al. Impact of an urban sanitation intervention on enteric pathogen detection in soils. Environ Sci Technol. 2021;55:9989–10000.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berendes DM, Sumner TA, Brown JM. Safely managed sanitation for all means fecal sludge management for at least 1.8 billion oeople in Low- and Middle-Income Countries. Environ Sci Technol. 2017;51:3074–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oh S, Buddenborg S, Yoder-Himes DR, Tiedje JM, Konstantinidis KT. Genomic diversity of Escherichia isolates from diverse habitats. PLoS ONE. 2012;7: e47005.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Koutsoumanis K, Allende A, Álvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021;19: e06651.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 2015;9:934–45.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Maeusli M, Lee B, Miller S, Reyna Z, Lu P, Yan J, et al. Horizontal gene transfer of antibiotic resistance from Acinetobacter baylyi to Escherichia coli on lettuce and subsequent antibiotic resistance transmission to the gut microbiome. MSphere. 2020;5:e00329-e420.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Agga GE, Cook KL, Netthisinghe AMP, Gilfillen RA, Woosley PB, Sistani KR. Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLoS ONE. 2019;14: e0212510.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Proia L, von Schiller D, Sànchez-Melsió A, Sabater S, Borrego CM, Rodríguez-Mozaz S, et al. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ Pollut. 2016;210:121–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma L, Li B, Jiang X-T, Wang Y-L, Xia Y, Li A-D, et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome. 2017;5:154.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • San Millan A, MacLean RC. Fitness costs of plasmids: A limit to plasmid transmission. Microbiol Spectr. 2017;5.

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7: e1002158.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Westhoff S, van Leeuwe TM, Qachach O, Zhang Z, van Wezel GP, Rozen DE. The evolution of no-cost resistance at sub-MIC concentrations of streptomycin in Streptomyces coelicolor. ISME J. 2017;11:1168–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mathur S, Jackson C, Urus H, Ziarko I, Goodbun M, Hsia Y, et al. A comparison of five paediatric dosing guidelines for antibiotics. Bull World Health Organ. 2020;98:406-412F.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules. 2018;23:795.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic. 2008;1:1–13.

    Article 
    CAS 

    Google Scholar
     

  • Hanna N, Sun P, Sun Q, Li X, Yang X, Ji X, et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ Int. 2018;114:131–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fent K, Weston AA, Caminada D. Ecotoxicology of human pharmaceuticals. Aquat Toxicol. 2006;76:122–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chaccour C, Hammann F, Rabinovich NR. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J. 2017;16:161.

  • Verdú JR, Lobo JM, Sánchez-Piñero F, Gallego B, Numa C, Lumaret J-P, et al. Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Sci Total Environ. 2018;618:219–28.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jochmann R, Blanckenhorn WU. Non-target effects of ivermectin on trophic groups of the cow dung insect community replicated across an agricultural landscape. Basic Appl Ecol. 2016;17:291–9.

    Article 

    Google Scholar
     

  • Wall R, Strong L. Environmental consequences of treating cattle with the antiparasitic drug ivermectin. Nature. 1987;327:418–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv. 2008;141:1461–74.

    Article 

    Google Scholar
     

  • Verdú JR, Cortez V, Ortiz AJ, González-Rodríguez E, Martinez-Pinna J, Lumaret J-P, et al. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci Rep. 2015;5:13912.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singlas E. Clinical pharmacokinetics of azithromycin. Pathol Biol. 1995;43:505–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Kong FYS, Horner P, Unemo M, Hocking JS. Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J Antimicrob Chemother. 2019;74:1157–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao Y, Yu Y, Ma Z, Li H, Yu W, Cao L, et al. Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress. Ecotoxicol Environ Saf. 2021;222: 112496.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fu L, Huang T, Wang S, Wang X, Su L, Li C, et al. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere. 2017;168:217–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Ma Y, Yang L, Duan S, Zhou F, Chen J, et al. Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways. Ecotoxicol Environ Saf. 2020;197: 110573.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mhadhbi L, El Ayari T, Tir M, Kadri D. Azithromycin effects on the European sea bass (Dicentrarchus labrax) early life stages following acute and chronic exposure: Laboratory bioassays. Drug Chem Toxicol. 2020;1–7.

  • Yan Z, Huang X, Xie Y, Song M, Zhu K, Ding S. Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos. Sci Total Environ. 2019;649:1414–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shiogiri NS, Ikefuti CV, Carraschi SP, da Cruz C, Fernandes MN. Effects of azithromycin on tilapia (Oreochromis niloticus): health status evaluation using biochemical, physiological and morphological biomarkers. Aquac Res. 2017;48:3669–83.

    CAS 
    Article 

    Google Scholar
     

  • Liu S, Bekele T-G, Zhao H, Cai X, Chen J. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay. North China Sci Total Environ. 2018;631–632:1398–405.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Alvarez-Muñoz D, Huerta B, Fernandez-Tejedor M, Rodríguez-Mozaz S, Barceló D. Multi-residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. Talanta. 2015;136:174–82.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sidhu H, O’Connor G, Ogram A, Kumar K. Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: Microbial toxicity and earthworm responses. Sci Total Environ. 2019;650:18–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sidhu H, O’Connor G, Kruse J. Plant toxicity and accumulation of biosolids-borne ciprofloxacin and azithromycin. Sci Total Environ. 2019;648:1219–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lau CH-F, Tien Y-C, Stedtfeld RD, Topp E. Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements. Sci Total Environ. 2020;727:138520.

  • Scott A, Tien Y-C, Drury CF, Reynolds WD, Topp E. Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp. Can J Microbiol. 2018;64:201–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G, Navarrete KM, et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature. 2016;533:212–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yoon E-J, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, et al. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3′)-VI. mBio. 5:e01972–14.

  • Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13:116–23.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Manaia CM. Assessing the Risk of Antibiotic Resistance Transmission from the Environment to Humans: Non-Direct Proportionality between Abundance and Risk. Trends Microbiol. 2017;25:173–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nadimpalli ML, Marks SJ, Montealegre MC, Gilman RH, Pajuelo MJ, Saito M, et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol. 2020;5:787–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Buelow E, Rico A, Gaschet M, Lourenço J, Kennedy SP, Wiest L, et al. Hospital discharges in urban sanitation systems: Long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. Water Res X. 2020;7: 100045.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamba M, Gupta S, Shukla R, Graham DW, Sreekrishnan TR, Ahammad SZ. Carbapenem resistance exposures via wastewaters across New Delhi. Environ Int. 2018;119:302–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koh TH, Ko K, Jureen R, Deepak RN, Tee NWS, Tan TY, et al. High counts of carbapenemase-producing Enterobacteriaceae in hospital sewage. Infect Control Hosp Epidemiol. 2015;36:619–21.

    PubMed 
    Article 

    Google Scholar
     

  • Ng C, Tay M, Tan B, Le T-H, Haller L, Chen H, et al. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters. Front Microbiol. 2017;8:2200.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lamba M, Graham DW, Ahammad SZ. Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. Environ Sci Technol. 2017;51:13906–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Divyashree M, Mani MK, Shama Prakash K, Vijaya Kumar D, Veena Shetty A, Shetty AK, et al. Hospital wastewater treatment reduces NDM-positive bacteria being discharged into water bodies. Water Environ Res. 2020;92:562–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hendricks R, Pool EJ. The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2012;47:289–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodriguez-Mozaz S, Vaz-Moreira I, Varela Della Giustina S, Llorca M, Barceló D, Schubert S, et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int. 2020;140:105733.

  • WHO, UNICEF, JMP. Progress on household drinking water, sanitation and hygiene: 2000 – 2020 [Internet]. World Health Organization; 2021 [cited 2022 Jan 31]. Available from: https://washdata.org/sites/default/files/2022-01/jmp-2021-wash-households_3.pdf

  • Willis LD, Chandler C. Quick fix for care, productivity, hygiene and inequality: reframing the entrenched problem of antibiotic overuse. BMJ Glob Health. BMJ Specialist Journals; 2019;4:e001590.

  • Araya P, Hug J, Joy G, Oschmann F, Rubinstein S. The impact of water and sanitation on diarrhoeal disease burde and over-consumption of antibiotics. [Internet]. [London, UK]: London School of Economics and Political Science; 2016. Available from: https://amr-review.org/sites/default/files/LSE%20AMR%20Capstone.pdf

  • Storr J, Kilpatrick C, Lee K. Time for a renewed focus on the role of cleaners in achieving safe health care in low- and middle-income countries. Antimicrob Resist Infect Control. 2021;10:59.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maillard J-Y, Bloomfield SF, Courvalin P, Essack SY, Gandra S, Gerba CP, et al. Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper. Am J Infect Control. 2020;48:1090–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mack I, Sharland M, Berkley JA, Klein N, Malhotra-Kumar S, Bielicki J. Antimicrobial resistance following azithromycin mass drug administration: Potential surveillance strategies to assess public health impact. Clin Infect Dis. 2020;70:1501–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • CDC. National Wastewater Surveillance System [Internet]. Centers for Disease Control and Prevention. 2022 [cited 2022 Jan 10]. Available from: https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/wastewater-surveillance.html

  • Årdal C, McAdams D, Wester AL, Møgedal S. Adapting environmental surveillance for polio to the need to track antimicrobial resistance. Bull World Health Organ. 2021;99:239–40.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Street R, Malema S, Mahlangeni N, Mathee A. Wastewater surveillance for Covid-19: An African perspective. Sci Total Environ. 2020;743: 140719.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Health Organization. WHO integrated global surveillance on ESBL-producing E. coli using a “One Health” approach. Implementation and opportunities [Internet]. Geneva: World Health Organization; 2021 Mar p. 76. Available from: https://www.who.int/publications-detail-redirect/who-integrated-global-surveillance-on-esbl-producing-e.-coli-using-a-one-health-approach

  • Banu RA, Alvarez JM, Reid AJ, Enbiale W, Labi A-K, Ansa EDO, et al. Extended Spectrum Beta-Lactamase Escherichia coli in river waters collected from two cities in ghana, 2018–2020. Trop Med Infect Dis. 2021;6:105.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matheson AI, Manhart LE, Pavlinac PB, Means AR, Akullian A, Levine GA, et al. Prioritizing countries for interventions to reduce cild mortality: Tools for maximizing the impact of Mass Drug Administration of azithromycin. PLoS ONE. 2014;9: e96658.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 2016;86:140–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *