• Canfield, R. L. et al. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N. Engl. J. Med. 348, 1517–1526. https://doi.org/10.1056/NEJMoa022848 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canfield, R. L., Kreher, D. A., Cornwell, C. & Henderson, C. R. Jr. Low-level lead exposure, executive functioning, and learning in early childhood. Child Neuropsychol. 9, 35–53. https://doi.org/10.1076/chin.9.1.35.14496 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Lanphear, B. P., Dietrich, K., Auinger, P. & Cox, C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep. 115, 521–529 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Lanphear, B. P. et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ Health Perspect. 113, 894–899 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Chiodo, L. M. et al. Blood lead levels and specific attention effects in young children. Neurotoxicol. Teratol. 29, 538–546. https://doi.org/10.1016/j.ntt.2007.04.001 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Brockel, B. J. & Cory-Slechta, D. A. Lead, attention, and impulsive behavior: Changes in a fixed-ratio waiting-for-reward paradigm. Pharmacol. Biochem. Behav. 60, 545–552 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Advisory Committee on Childhood Lead Poisoning Prevention (ACCLPP). Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. Report of the Advisory Committee on Childhood Lead Poisoning Prevention of the Centers for Disease Control and Prevention, 1–68. https://www.cdc.gov/nceh/lead/acclpp/final_document_030712.pdf, (2012).

  • Evens, A. et al. The impact of low-level lead toxicity on school performance among children in the Chicago Public Schools: A population-based retrospective cohort study. Environ Health 14, 21. https://doi.org/10.1186/s12940-015-0008-9 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda, M. L. et al. The relationship between early childhood blood lead levels and performance on end-of-grade tests. Environ. Health Perspect. 115, 1242–1247. https://doi.org/10.1289/ehp.9994 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda, M. L., Osgood, C., Hastings, C. The Impact of Early Childhood Lead Exposure on Educational Test Performance Among Connecticut Schoolchildren, Phase 1 Report. (Duke University, Children’s Environmental Health Initiative, 2011).

  • Lanphear, B. P. The paradox of lead poisoning prevention. Science 281, 1617–1618. https://doi.org/10.1126/science.281.5383.1617 (1998).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bellinger, D. C. Lead neurotoxicity and socioeconomic status: Conceptual and analytical issues. Neurotoxicology 29, 828–832. https://doi.org/10.1016/j.neuro.2008.04.005 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutter, M. In Lead Versus health. (eds Russell-Jones, R., Rutter, M.) 333–370 (Wiley, 1983).

  • Winneke, G. & Kraemer, U. Neuropsychological effects of lead in children: Interactions with social background variables. Neuropsychobiology 11, 195–202 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Marshall, A. T. et al. Association of lead-exposure risk and family income with childhood brain outcomes. Nat. Med. 26, 91–97. https://doi.org/10.1038/s41591-019-0713-y (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, D. W., Pothakos, K. & Schneider, J. S. Sex and rearing condition modify the effects of perinatal lead exposure on learning and memory. Neurotoxicology 33, 985–995. https://doi.org/10.1016/j.neuro.2012.04.016 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, J. S., Lee, M. H., Anderson, D. W., Zuck, L. & Lidsky, T. I. Enriched environment during development is protective against lead-induced neurotoxicity. Brain Res. 896, 48–55 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Guilarte, T. R., Toscano, C. D., McGlothan, J. L. & Weaver, S. A. Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure. Ann. Neurol. 53, 50–56. https://doi.org/10.1002/ana.10399 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cao, X., Huang, S. & Ruan, D. Enriched environment restores impaired hippocampal long-term potentiation and water maze performance induced by developmental lead exposure in rats. Dev. Psychobiol. 50, 307–313. https://doi.org/10.1002/dev.20287 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Verma, M. & Schneider, J. S. Strain specific effects of low level lead exposure on associative learning and memory in rats. Neurotoxicology 62, 186–191. https://doi.org/10.1016/j.neuro.2017.07.006 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, D. W., Mettil, W. & Schneider, J. S. Effects of low level lead exposure on associative learning and memory in the rat: Influences of sex and developmental timing of exposure. Toxicol. Lett. 246, 57–64. https://doi.org/10.1016/j.toxlet.2016.01.011 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. In Use R!, XVI, 260 (Springer International Publishing: Imprint: Springer, 2016).

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. https://doi.org/10.1093/nar/gkaa970 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Xing, W. et al. Genome-wide identification of lncRNAs and mRNAs differentially expressed in non-functioning pituitary adenoma and construction of an lncRNA–mRNA co-expression network. Biol. Open 8, 037127. https://doi.org/10.1242/bio.037127 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. P. et al. Microarray expression profile of long noncoding RNAs in human osteosarcoma. Biochem. Biophys. Res. Commun. 433, 200–206. https://doi.org/10.1016/j.bbrc.2013.02.083 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gu, W. et al. LncRNA expression profile reveals the potential role of lncRNAs in gastric carcinogenesis. Cancer Biomark. 15, 249–258. https://doi.org/10.3233/CBM-150460 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Identification of biomarkers for the detection of early stage lung adenocarcinoma by microarray profiling of long noncoding RNAs. Lung Cancer 88, 147–153. https://doi.org/10.1016/j.lungcan.2015.02.009 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, A. C. & Robinson, A. J. MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res. 44, 1258–1261. https://doi.org/10.1093/nar/gkv1001 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Shen, S. et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A. 111, E5593-5601. https://doi.org/10.1073/pnas.1419161111 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, C. M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 39, 25–27. https://doi.org/10.1038/ng1933 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Leblond, C. S. et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A gradient of severity in cognitive impairments. PLoS Genet. 10, e1004580. https://doi.org/10.1371/journal.pgen.1004580 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uchino, S. & Waga, C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 35, 106–110. https://doi.org/10.1016/j.braindev.2012.05.013 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Blackwood, E. M. & Eisenman, R. N. Regulation of Myc: Max complex formation and its potential role in cell proliferation. Tohoku J. Exp. Med. 168, 195–202. https://doi.org/10.1620/tjem.168.195 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Blackwood, E. M., Kretzner, L. & Eisenman, R. N. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 2, 227–235. https://doi.org/10.1016/s0959-437x(05)80278-3 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cascon, A. & Robledo, M. MAX and MYC: A heritable breakup. Cancer Res. 72, 3119–3124. https://doi.org/10.1158/0008-5472.CAN-11-3891 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205. https://doi.org/10.1016/s0092-8674(02)01284-9 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Braidy, N. et al. Differential expression of sirtuins in the aging rat brain. Front. Cell Neurosci. 9, 167. https://doi.org/10.3389/fncel.2015.00167 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxwell, M. M. et al. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum. Mol. Genet. 20, 3986–3996. https://doi.org/10.1093/hmg/ddr326 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78. https://doi.org/10.1101/gad.186601 (2001).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of mTOR. Neuroscience 341, 112–153. https://doi.org/10.1016/j.neuroscience.2016.11.017 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tang, J. X., Thompson, K., Taylor, R. W. & Olahova, M. Mitochondrial OXPHOS biogenesis: Co-regulation of protein synthesis, import, and assembly pathways. Int. J. Mol. Sci. 21, 3820. https://doi.org/10.3390/ijms21113820 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Harada, A. et al. Nadrin, a novel neuron-specific GTPase-activating protein involved in regulated exocytosis. J. Biol. Chem. 275, 36885–36891. https://doi.org/10.1074/jbc.M004069200 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shin, E. et al. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat. Commun. 4, 1440. https://doi.org/10.1038/ncomms2443 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dolphin, A. C. Functions of presynaptic voltage-gated calcium channels. Function 2, zqaa027. https://doi.org/10.1093/function/zqaa027 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Helbig, K. L. et al. De novo pathogenic variants in CACNA1E cause developmental and epileptic encephalopathy with contractures, macrocephaly, and dyskinesias. Am. J. Hum. Genet. 103, 666–678. https://doi.org/10.1016/j.ajhg.2018.09.006 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits. Sci. Rep. 6, 28750. https://doi.org/10.1038/srep28750 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taglienti, C. A., Wysk, M. & Davis, R. J. Molecular cloning of the epidermal growth factor-stimulated protein kinase p56 KKIAMRE. Oncogene 13, 2563–2574 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, L. S., Liang, C. J., Tseng, C. Y., Yeh, C. W. & Tsai, J. N. Zebrafish cyclin-dependent protein kinase-like 1 (zcdkl1): Identification and functional characterization. Int. J. Mol. Sci. 12, 3606–3617. https://doi.org/10.3390/ijms12063606 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canning, P. et al. CDKL family kinases have evolved distinct structural features and ciliary function. Cell Rep. 22, 885–894. https://doi.org/10.1016/j.celrep.2017.12.083 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuban, W. & Daniel, W. A. Cytochrome P450 expression and regulation in the brain. Drug Metab. Rev. 53, 1–29. https://doi.org/10.1080/03602532.2020.1858856 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fortes, P., Lamond, A. I. & Ortin, J. Influenza virus NS1 protein alters the subnuclear localization of cellular splicing components. J. Gen. Virol. 76(Pt 4), 1001–1007. https://doi.org/10.1099/0022-1317-76-4-1001 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, W. & Krug, R. M. U6atac snRNA, the highly divergent counterpart of U6 snRNA, is the specific target that mediates inhibition of AT-AC splicing by the influenza virus NS1 protein. RNA 4, 55–64 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Thompson, M. G. et al. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat. Commun. 9, 2407. https://doi.org/10.1038/s41467-018-04779-4 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeboah, M. et al. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Insight. https://doi.org/10.1172/jci.insight.141593 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dines, M. & Lamprecht, R. The role of Ephs and Ephrins in memory formation. Int. J. Neuropsychopharmacol. 19, 1–14. https://doi.org/10.1093/ijnp/pyv106 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Bush, J. O. & Soriano, P. Eph/ephrin signaling: Genetic, phosphoproteomic, and transcriptomic approaches. Semin. Cell Dev. Biol. 23, 26–34. https://doi.org/10.1016/j.semcdb.2011.10.018 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jorgensen, C. et al. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326, 1502–1509. https://doi.org/10.1126/science.1176615 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lisabeth, E. M., Falivelli, G. & Pasquale, E. B. Eph receptor signaling and ephrins. Cold Spring. Harb. Perspect. Biol. 5, a009159. https://doi.org/10.1101/cshperspect.a009159 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piccinin, S. et al. Interaction between Ephrins and mGlu5 metabotropic glutamate receptors in the induction of long-term synaptic depression in the hippocampus. J. Neurosci. 30, 2835–2843. https://doi.org/10.1523/JNEUROSCI.4834-09.2010 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Perturbation of Ephrin receptor signaling and glutamatergic transmission in the hypothalamus in depression using proteomics integrated with metabolomics. Front. Neurosci. 13, 1359. https://doi.org/10.3389/fnins.2019.01359 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henderson, N. T. & Dalva, M. B. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Mol. Cell Neurosci. 91, 108–121. https://doi.org/10.1016/j.mcn.2018.07.002 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicolas, C. S. et al. The role of JAK-STAT signaling within the CNS. JAKSTAT 2, e22925. https://doi.org/10.4161/jkst.22925 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, H. et al. Inhibition of the JAK/STAT pathway protects against alpha-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J. Neurosci. 36, 5144–5159. https://doi.org/10.1523/JNEUROSCI.4658-15.2016 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nabavi, S. M. et al. Targeting STATs in neuroinflammation: The road less traveled!. Pharmacol. Res. 141, 73–84. https://doi.org/10.1016/j.phrs.2018.12.004 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mani, M. S. et al. Whole mitochondria genome mutational spectrum in occupationally exposed lead subjects. Mitochondrion 48, 60–66. https://doi.org/10.1016/j.mito.2019.04.009 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rosin, A. The long-term consequences of exposure to lead. Isr. Med. Assoc. J. 11, 689–694 (2009).

    PubMed 

    Google Scholar
     

  • Cagin, U. & Enriquez, J. A. The complex crosstalk between mitochondria and the nucleus: What goes in between?. Int. J. Biochem. Cell Biol. 63, 10–15. https://doi.org/10.1016/j.biocel.2015.01.026 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Poyton, R. O. & McEwen, J. E. Crosstalk between nuclear and mitochondrial genomes. Annu. Rev. Biochem. 65, 563–607. https://doi.org/10.1146/annurev.bi.65.070196.003023 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cuperfain, A. B., Zhang, Z. L., Kennedy, J. L. & Goncalves, V. F. The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease. Mol. Neuropsychiatry 4, 52–69. https://doi.org/10.1159/000488031 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Methylmercury exposure alters RNA splicing in human neuroblastoma SK-N-SH cells: Implications from proteomic and post-transcriptional responses. Environ. Pollut. 238, 213–221. https://doi.org/10.1016/j.envpol.2018.03.019 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pai, A. A. & Luca, F. Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. Wiley Interdiscip. Rev. RNA 10, e1503. https://doi.org/10.1002/wrna.1503 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Richards, A. L. et al. Environmental perturbations lead to extensive directional shifts in RNA processing. PLoS Genet. 13, e1006995. https://doi.org/10.1371/journal.pgen.1006995 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, P., Hou, Z., Bolin, J. M., Thomson, J. A. & Stewart, R. RNA-seq of human neural progenitor cells exposed to lead (Pb) reveals transcriptome dynamics, splicing alterations and disease risk associations. Toxicol. Sci. 159, 251–265. https://doi.org/10.1093/toxsci/kfx129 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, T., Koizumi, H. & Gleeson, J. G. The doublecortin and doublecortin-like kinase 1 genes cooperate in murine hippocampal development. Cereb. Cortex 16(Suppl 1), i69-73. https://doi.org/10.1093/cercor/bhk005 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Vreugdenhil, E. et al. Doublecortin-like, a microtubule-associated protein expressed in radial glia, is crucial for neuronal precursor division and radial process stability. Eur. J. Neurosci. 25, 635–648. https://doi.org/10.1111/j.1460-9568.2007.05318.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Ji, H. et al. Identification, functional prediction, and key lncRNA verification of cold stress-related lncRNAs in rats liver. Sci. Rep. 10, 521. https://doi.org/10.1038/s41598-020-57451-7 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritah, S., Niclou, S. P. & Azuaje, F. Databases for lncRNAs: A comparative evaluation of emerging tools. RNA 20, 1655–1665. https://doi.org/10.1261/rna.044040.113 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, P. & Chang, C. P. Long non-coding RNA and chromatin remodeling. RNA Biol. 12, 1094–1098. https://doi.org/10.1080/15476286.2015.1063770 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirtana, R., Manna, S. & Patra, S. K. Molecular mechanisms of KDM5A in cellular functions: Facets during development and disease. Exp. Cell Res. 396, 112314. https://doi.org/10.1016/j.yexcr.2020.112314 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nan, A. et al. A novel regulatory network among LncRpa, CircRar1, MiR-671 and apoptotic genes promotes lead-induced neuronal cell apoptosis. Arch. Toxicol. 91, 1671–1684. https://doi.org/10.1007/s00204-016-1837-1 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nan, A. et al. Editor’s highlight: lncRNAL20992 regulates apoptotic proteins to promote lead-induced neuronal apoptosis. Toxicol. Sci. 161, 115–124. https://doi.org/10.1093/toxsci/kfx203 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nan, A. et al. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget 7, 112–124. https://doi.org/10.18632/oncotarget.6590 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, J. S., Anderson, D. W., Sonnenahalli, H. & Vadigepalli, R. Sex-based differences in gene expression in hippocampus following postnatal lead exposure. Toxicol. Appl. Pharmacol. 256, 179–190. https://doi.org/10.1016/j.taap.2011.08.008 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, J. S., Anderson, D. W., Talsania, K., Mettil, W. & Vadigepalli, R. Effects of developmental lead exposure on the hippocampal transcriptome: Influences of sex, developmental period, and lead exposure level. Toxicol. Sci. 129, 108–125. https://doi.org/10.1093/toxsci/kfs189 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, J. S., Mettil, W. & Anderson, D. W. Differential effect of postnatal lead exposure on gene expression in the hippocampus and frontal cortex. J. Mol. Neurosci. 47, 76–88. https://doi.org/10.1007/s12031-011-9686-0 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rampon, C. et al. Effects of environmental enrichment on gene expression in the brain. Proc. Natl. Acad. Sci. U. S. A. 97, 12880–12884. https://doi.org/10.1073/pnas.97.23.12880 (2000).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. Y. et al. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nat. Commun. 9, 298. https://doi.org/10.1038/s41467-017-02748-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohline, S. M. & Abraham, W. C. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 145, 3–12. https://doi.org/10.1016/j.neuropharm.2018.04.007 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lambert, T. J., Fernandez, S. M. & Frick, K. M. Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol. Learn. Mem. 83, 206–216. https://doi.org/10.1016/j.nlm.2004.12.001 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pena, Y., Prunell, M., Rotllant, D., Armario, A. & Escorihuela, R. M. Enduring effects of environmental enrichment from weaning to adulthood on pituitary-adrenal function, pre-pulse inhibition and learning in male and female rats. Psychoneuroendocrinology 34, 1390–1404. https://doi.org/10.1016/j.psyneuen.2009.04.019 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pena, C. J. et al. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat. Commun. 10, 5098. https://doi.org/10.1038/s41467-019-13085-6 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.