• da Costa, J. P., Santos, P. S. M., Duarte, A. C. & Rocha-Santos, T. (Nano)plastics in the environment—sources, fates and effects. Sci. Total Environ. 566–567, 15–26 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Huang, W. et al. Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J. Hazard. Mater. 405, 124187 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peng, L. et al. Micro- and nano-plastics in marine environment: source, distribution and threats—a review. Sci. Total Environ. 698, 134254 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Galgani, L., Engel, A., Rossi, C., Donati, A. & Loiselle, S. A. Polystyrene microplastics increase microbial release of marine chromophoric dissolved organic matter in microcosm experiments. Sci. Rep. 8, 14635 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gewert, B., Plassmann, M., Sandblom, O. & MacLeod, M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ. Sci. Technol. Lett. 5, 272–276 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Suhrhoff, T. J. & Scholz-Böttcher, B. M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—A lab experiment. Mar. Pollut. Bull. 102, 84–94 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taipale, S. J. et al. Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis. Sci. Rep. 9, 19894 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tetu, S. G. et al. Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean’s most abundant photosynthetic bacteria. Commun. Biol. 2, 184 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ohtake, Y., Kobayashi, T., Asabeb, H. & Murakami’, N. Studies on biodegradation of LDPE—observation of LDPE films scattered in agricultural fields or in garden soil. Polym. Degrad. Stab. 60, 79–84 (1996).

    Article 

    Google Scholar
     

  • Dekiff, J. H., Remy, D., Klasmeier, J. & Fries, E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ. Pollut. 186, 248–256 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E. & Purnell, P. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hansen, E., Nillson, N., Lithner, D. & Lassen, C. Hazardous substances in plastic materials (Klima- og forurensningsdirektoratet, 2013).

  • Andrady, A. L. The plastic in microplastics: a review. Mar. Pollut. Bull. 119, 12–22 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & Sebille, E. V. The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Crit. Rev. Environ. Sci. Technol. 48, 685–722 (2018).

    Article 

    Google Scholar
     

  • Middelboe, M. & Søndergaard, M. Bacterioplankton growth yield: seasonal variations and coupling to substrate lability and beta-glucosidase activity. Appl. Environ. Microbiol. 59, 3916–3921 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sobczak, W. V. Epilithic bacterial responses to variations in algal biomass and labile dissolved organic carbon during biofilm colonization. J. North Am. Benthol. Soc. 15, 143–154 (1996).

    Article 

    Google Scholar
     

  • Tanentzap, A. J. et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. PNAS 116, 24689–24695 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • D’Andrilli, J., Cooper, W. T., Foreman, C. M. & Marshall, A. G. An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability. Rapid Commun. Mass Spectrom. 29, 2385–2401 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Mentges, A., Feenders, C., Seibt, M., Blasius, B. & Dittmar, T. Functional molecular diversity of marine dissolved organic matter is reduced during degradation. Front. Mar. Sci. 4, 194 (2017).

    Article 

    Google Scholar
     

  • Kellerman, A. M., Dittmar, T., Kothawala, D. N. & Tranvik, L. J. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat. Commun. 5, 3804 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wagner, S. et al. Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers. Environ. Sci. Technol. 49, 13798–13806 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Massicotte, P., Asmala, E., Stedmon, C. & Markager, S. Global distribution of dissolved organic matter along the aquatic continuum: across rivers, lakes and oceans. Sci. Total Environ. 609, 180–191 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rasmussen, J. B., Godbout, L. & Schallenberg, M. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34, 1336–1343 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mostovaya, A., Hawkes, J. A., Dittmar, T. & Tranvik, L. J. Molecular determinants of dissolved organic matter reactivity in lake water. Front. Earth Sci. 5, 106 (2017).

    Article 

    Google Scholar
     

  • Megharaj, M., Wittich, R.-M., Blasco, R., Pieper, D. H. & Timmis, K. N. Superior survival and degradation of dibenzo-p-dioxin and dibenzofuran in soil by soil-adapted Sphingomonas sp. strain RW1. Appl. Microbiol. Biotechnol. 48, 109–114 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Fitch, A., Orland, C., Willer, D., Emilson, E. J. S. & Tanentzap, A. J. Feasting on terrestrial organic matter: dining in a dark lake changes microbial decomposition. Glob. Change Biol. 24, 5110–5122 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Orland, C. et al. Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME J. 13, 1–11 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ruiz‐González, C., Niño‐García, J. P., Lapierre, J.-F. & Giorgio, P. A. D. The quality of organic matter shapes the functional biogeography of bacterioplankton across boreal freshwater ecosystems. Glob. Ecol. Biogeogr. 24, 1487–1498 (2015).

    Article 

    Google Scholar
     

  • Wilhelm, L. et al. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms. ISME J. 9, 2454–2464 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tanentzap, A. J. et al. Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use. PLOS Biol. 19, e3001389 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kraemer, S. A. et al. A large-scale assessment of lakes reveals a pervasive signal of land use on bacterial communities. ISME J. 14, 3011–3023 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Apple, J. K. & del Giorgio, P. A. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. ISME J. 1, 729–742 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • del Giorgio, P. A. & Newell, R. E. I. Phosphorus and DOC availability influence the partitioning between bacterioplankton production and respiration in tidal marsh ecosystems. Environ. Microbiol. 14, 1296–1307 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lozano, C. et al. Toxicity of UV filters on marine bacteria: combined effects with damaging solar radiation. Sci. Total Environ. 722, 137803 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao, F., He, Y., Kushmaro, A. & Gin, K. Y.-H. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 193, 1–8 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Baña, Z., Ayo, B., Marrasé, C., Gasol, J. M. & Iriberri, J. Changes in bacterial metabolism as a response to dissolved organic matter modification during protozoan grazing in coastal Cantabrian and Mediterranean waters. Environ. Microbiol. 16, 498–511 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Reinthaler, T., Winter, C. & Herndl, G. J. Relationship between bacterioplankton richness, respiration, and production in the southern North Sea. Appl. Environ. Microbiol. 71, 2260–2266 (2005).

  • Xu, J. et al. Effect of seawater–sewage cross-transplants on bacterial metabolism and diversity. Microb. Ecol. 66, 60–72 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Attermeyer, K. et al. Effects of light and autochthonous carbon additions on microbial turnover of allochthonous organic carbon and community composition. Microb. Ecol. 69, 361–371 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robbins, C. J. et al. Low-level dissolved organic carbon subsidies drive a trophic upsurge in a boreal stream. Freshw. Biol. 65, 920–934 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tanentzap, A. J. et al. Forests fuel fish growth in freshwater deltas. Nat. Commun. 5, 4077 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bandopadhyay, S. et al. Soil microbial communities associated with biodegradable plastic mulch films. Front. Microbiol. 11, 587074 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gambarini, V. et al. Phylogenetic distribution of plastic-degrading microorganisms. mSystems 6, e01112–e01120.

  • Yang, Y. et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ. Sci. Technol. 49, 12087–12093 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • León-Zayas, R., Roberts, C., Vague, M. & Mellies, J. L. Draft genome sequences of five environmental bacterial isolates that degrade polyethylene terephthalate plastic. Microbiol. Resour. Announc. 8, e00237–19 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taghavi, N., Singhal, N., Zhuang, W.-Q. & Baroutian, S. Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere 263, 127975 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roberts, C., Edwards, S., Vague, M., León-Zayas, R., Scheffer, H., Chan, G., Swartz, N. A. & Mellies, J. L. Environmental consortium containing Pseudomonasand Bacillusspecies synergistically degrades polyethylene terephthalate plastic. mSphere 5, e01151-20 (2020).

  • Meyer-Cifuentes, I. E. et al. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium. Nat. Commun. 11, 5790 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hussein, A. A., Alzuhairi, M. & Aljanabi, N. H. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. AIP Conf. Proc. 1968, 030081 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Groh, K. J. et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 651, 3253–3268 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C. & Rocha-Santos, T. Effects of microplastics on microalgae populations: a critical review. Sci. Total Environ. 665, 400–405 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schiavo, S., Oliviero, M., Chiavarini, S., Dumontet, S. & Manzo, S. Polyethylene, polystyrene, and polypropylene leachate impact upon marine microalgae Dunaliella tertiolecta. J. Toxicol. Environ. Health Part A 84, 249–260 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Luo, H. et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci. Total Environ. 678, 1–9 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kettner, M. T., Rojas‐Jimenez, K., Oberbeckmann, S., Labrenz, M. & Grossart, H. Microplastics alter composition of fungal communities in aquatic ecosystems. Environ. Microbiol. 19, 4447–4459 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Merder, J. et al. ICBM-OCEAN: processing ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Anal. Chem. 92, 6832–6838 (2020).

  • Bade, D., Houser, J. & Scanger, S. Methods of the cascading trophic interactions project (Center for Limnology, University of Wisconsin–Madison, 1998).

  • Attermeyer, K., Premke, K., Hornick, T., Hilt, S. & Grossart, H.-P. Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats. Ecology 94, 2754–2766 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Klimant, I., Meyer, V. & Kühl, M. Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol. Oceanogr. 40, 1159–1165 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • del Giorgio, P. A. & Cole, J. J. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Evol. Syst. 29, 503–541 (1998).

    Article 

    Google Scholar
     

  • Nercessian, O., Noyes, E., Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71, 6885–6899 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems 2, e00127–16 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105, 7774–7778 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lenth, R. V. emmeans: estimated marginal means, aka least-squares means, https://CRAN.R-project.org/package=emmeans (2021).

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.