• Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Scrosati, B. & Garche, J. Lithium batteries: Status, prospects and future. J. Power Sour. 195, 2419–2430 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Murata, H. et al. Multilayer graphene battery anodes on plastic sheets for flexible electronics. ACS Appl. Energy Mater. 3, 8410–8414 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Toko, K. & Murata, H. Layer exchange synthesis of multilayer graphene. Nanotechnology 32, 472005 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Toko, K. & Suemasu, T. Metal-induced layer exchange of group IV materials. J. Phys. D. Appl. Phys. 53, 373002 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Nakajima, Y. et al. Metal catalysts for layer-exchange growth of multilayer graphene. ACS Appl. Mater. Interfaces 10, 41664–41669 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murata, H. et al. High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer. Sci. Rep. 9, 4068 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tian, H., Xin, F., Wang, X., He, W. & Han, W. High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Mater. 1, 153–169 (2015).


    Google Scholar
     

  • Park, C.-M., Kim, J.-H., Kim, H. & Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, A. et al. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 1, 141–162 (2021).

    Article 

    Google Scholar
     

  • Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maroni, F. et al. Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. J. Power Sour. 269, 873–882 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Qu, F., Li, C., Wang, Z., Strunk, H. P. & Maier, J. Metal-induced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 6, 8782–8788 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 151, A698 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Baggetto, L. & Notten, P. H. L. Lithium-ion (De)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study. J. Electrochem. Soc. 156, A169 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Wu, S. et al. Germanium-based nanomaterials for rechargeable batteries. Angew. Chemie – Int. Ed. 55, 7898–7922 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wu, X.-L., Guo, Y.-G. & Wan, L.-J. Rational design of anode materials based on group IV elements (Si, Ge, and Sn) for lithium-ion batteries. Chem. Asian J. 8, 1948–1958 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chou, C.-Y. & Hwang, G. S. On the origin of the significant difference in lithiation behavior between silicon and germanium. J. Power Sources 263, 252–258 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yang, Y. et al. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode. ACS Nano 12, 2900–2908 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abel, P. R. et al. Nanostructured Si(1–x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano 7, 2249–2257 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song, T. et al. Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano 6, 303–309 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, H. et al. Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation. Nano Lett. 15, 4135–4142 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoon, S., Park, C.-M. & Sohn, H.-J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 11, A42 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Ge, M. et al. Capacity retention behavior and morphology evolution of SixGe1-x nanoparticles as lithium-ion battery anode. Nanotechnology 26, 255702 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yu, J., Du, N., Wang, J., Zhang, H. & Yang, D. SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 577, 564–568 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Stokes, K., Flynn, G., Geaney, H., Bree, G. & Ryan, K. M. Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett. 18, 5569–5575 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Son, Y. et al. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes. Adv. Mater. 30, 1705430 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X., Loaiza, L. C., Monconduit, L. & Seznec, V. 2D silicon–germanium-layered materials as anodes for li-ion batteries. ACS Appl. Energy Mater. 4, 12552–12561 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tsao, C. Y., Liu, Z., Hao, X. & Green, M. A. In situ growth of Ge-rich poly-SiGe: H thin films on glass by RF magnetron sputtering for photovoltaic applications. Appl. Surf. Sci. 257, 4354–4359 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Niedermeier, C. A., Wang, Z. & Mittemeijer, E. J. Al-induced crystallization of amorphous SixGe1-x (0 ≤ x ≤ 1): Diffusion, phase development and layer exchange. Acta Mater. 72, 211–222 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mizoguchi, T. et al. Composition dependent properties of p- and n-type polycrystalline group-IV alloy thin films. J. Alloys Compd. 887, 161306 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kusano, K., Yamamoto, A., Nakata, M., Suemasu, T. & Toko, K. Thermoelectric inorganic SiGe film synthesized on flexible plastic substrate. ACS Appl. Energy Mater. 1, 5280–5285 (2018).

    CAS 

    Google Scholar
     

  • Kusano, K., Tsuji, M., Suemasu, T. & Toko, K. 80 °C synthesis of thermoelectric nanocrystalline Ge film on flexible plastic substrate by Zn-induced layer exchange. Appl. Phys. Express 12, 055501 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ozawa, T. et al. Thickness-dependent thermoelectric properties of Si1-xGex films formed by Al-induced layer exchange. J. Appl. Phys. 129, 015303 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tsuji, M., Kusano, K., Suemasu, T. & Toko, K. Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics. Appl. Phys. Lett. 116, 182105 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Tsuji, M., Murata, M., Yamamoto, A., Suemasu, T. & Toko, K. Thin-film thermoelectric generator based on polycrystalline SiGe formed by Ag-induced layer exchange. Appl. Phys. Lett. 117, 162103 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mooney, P. M., Dacol, F. H., Tsang, J. C. & Chu, J. O. Raman scattering analysis of relaxed Ge x Si 1–x alloy layers. Appl. Phys. Lett. 62, 2069–2071 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pezzoli, F. et al. Raman spectroscopy of Si1-xGex epilayers. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 124–125, 127–131 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gu, M. et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439–8447 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Misra, S. et al. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes. ACS Nano 6, 5465–5473 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Radvanyi, E. et al. Study of lithiation mechanisms in silicon electrodes by auger electron spectroscopy. J. Mater. Chem. A 1, 4956 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Jerliu, B. et al. Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry. Phys. Chem. Chem. Phys. 20, 23480–23491 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loaiza, L. C. et al. Electrochemical lithiation of Ge: New insights by operando spectroscopy and diffraction. J. Phys. Chem. C 122, 3709–3718 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X., Wu, X.-Y., Chang, B. & Wang, K.-X. Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020).

    Article 

    Google Scholar
     

  • Abel, P. R., Lin, Y.-M., Celio, H., Heller, A. & Mullins, C. B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. ACS Nano 6, 2506–2516 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roy, P. & Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3, 2454–2484 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Rousselot, S. et al. Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries. J. Power Sour. 202, 262–268 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *