Nishide, H. & Oyaizu, K. Toward flexible batteries. Science 319, 737–738 (2008).
Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013).
Scrosati, B. & Garche, J. Lithium batteries: Status, prospects and future. J. Power Sour. 195, 2419–2430 (2010).
Murata, H. et al. Multilayer graphene battery anodes on plastic sheets for flexible electronics. ACS Appl. Energy Mater. 3, 8410–8414 (2020).
Toko, K. & Murata, H. Layer exchange synthesis of multilayer graphene. Nanotechnology 32, 472005 (2021).
Toko, K. & Suemasu, T. Metal-induced layer exchange of group IV materials. J. Phys. D. Appl. Phys. 53, 373002 (2020).
Nakajima, Y. et al. Metal catalysts for layer-exchange growth of multilayer graphene. ACS Appl. Mater. Interfaces 10, 41664–41669 (2018).
Murata, H. et al. High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer. Sci. Rep. 9, 4068 (2019).
Tian, H., Xin, F., Wang, X., He, W. & Han, W. High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Mater. 1, 153–169 (2015).
Park, C.-M., Kim, J.-H., Kim, H. & Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010).
Huang, A. et al. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 1, 141–162 (2021).
Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).
Maroni, F. et al. Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. J. Power Sour. 269, 873–882 (2014).
Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012).
Qu, F., Li, C., Wang, Z., Strunk, H. P. & Maier, J. Metal-induced crystallization of highly corrugated silicon thick films as potential anodes for Li-ion batteries. ACS Appl. Mater. Interfaces 6, 8782–8788 (2014).
Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 151, A698 (2004).
Baggetto, L. & Notten, P. H. L. Lithium-ion (De)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study. J. Electrochem. Soc. 156, A169 (2009).
Wu, S. et al. Germanium-based nanomaterials for rechargeable batteries. Angew. Chemie – Int. Ed. 55, 7898–7922 (2016).
Wu, X.-L., Guo, Y.-G. & Wan, L.-J. Rational design of anode materials based on group IV elements (Si, Ge, and Sn) for lithium-ion batteries. Chem. Asian J. 8, 1948–1958 (2013).
Chou, C.-Y. & Hwang, G. S. On the origin of the significant difference in lithiation behavior between silicon and germanium. J. Power Sources 263, 252–258 (2014).
Yang, Y. et al. Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode. ACS Nano 12, 2900–2908 (2018).
Abel, P. R. et al. Nanostructured Si(1–x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano 7, 2249–2257 (2013).
Song, T. et al. Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano 6, 303–309 (2012).
Kim, H. et al. Germanium silicon alloy anode material capable of tunable overpotential by nanoscale Si segregation. Nano Lett. 15, 4135–4142 (2015).
Yoon, S., Park, C.-M. & Sohn, H.-J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 11, A42 (2008).
Ge, M. et al. Capacity retention behavior and morphology evolution of SixGe1-x nanoparticles as lithium-ion battery anode. Nanotechnology 26, 255702 (2015).
Yu, J., Du, N., Wang, J., Zhang, H. & Yang, D. SiGe porous nanorod arrays as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 577, 564–568 (2013).
Stokes, K., Flynn, G., Geaney, H., Bree, G. & Ryan, K. M. Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes. Nano Lett. 18, 5569–5575 (2018).
Son, Y. et al. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes. Adv. Mater. 30, 1705430 (2018).
Chen, X., Loaiza, L. C., Monconduit, L. & Seznec, V. 2D silicon–germanium-layered materials as anodes for li-ion batteries. ACS Appl. Energy Mater. 4, 12552–12561 (2021).
Tsao, C. Y., Liu, Z., Hao, X. & Green, M. A. In situ growth of Ge-rich poly-SiGe: H thin films on glass by RF magnetron sputtering for photovoltaic applications. Appl. Surf. Sci. 257, 4354–4359 (2011).
Niedermeier, C. A., Wang, Z. & Mittemeijer, E. J. Al-induced crystallization of amorphous SixGe1-x (0 ≤ x ≤ 1): Diffusion, phase development and layer exchange. Acta Mater. 72, 211–222 (2014).
Mizoguchi, T. et al. Composition dependent properties of p- and n-type polycrystalline group-IV alloy thin films. J. Alloys Compd. 887, 161306 (2021).
Kusano, K., Yamamoto, A., Nakata, M., Suemasu, T. & Toko, K. Thermoelectric inorganic SiGe film synthesized on flexible plastic substrate. ACS Appl. Energy Mater. 1, 5280–5285 (2018).
Kusano, K., Tsuji, M., Suemasu, T. & Toko, K. 80 °C synthesis of thermoelectric nanocrystalline Ge film on flexible plastic substrate by Zn-induced layer exchange. Appl. Phys. Express 12, 055501 (2019).
Ozawa, T. et al. Thickness-dependent thermoelectric properties of Si1-xGex films formed by Al-induced layer exchange. J. Appl. Phys. 129, 015303 (2021).
Tsuji, M., Kusano, K., Suemasu, T. & Toko, K. Zn-induced layer exchange of p- and n-type nanocrystalline SiGe layers for flexible thermoelectrics. Appl. Phys. Lett. 116, 182105 (2020).
Tsuji, M., Murata, M., Yamamoto, A., Suemasu, T. & Toko, K. Thin-film thermoelectric generator based on polycrystalline SiGe formed by Ag-induced layer exchange. Appl. Phys. Lett. 117, 162103 (2020).
Mooney, P. M., Dacol, F. H., Tsang, J. C. & Chu, J. O. Raman scattering analysis of relaxed Ge x Si 1–x alloy layers. Appl. Phys. Lett. 62, 2069–2071 (1993).
Pezzoli, F. et al. Raman spectroscopy of Si1-xGex epilayers. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 124–125, 127–131 (2005).
Gu, M. et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439–8447 (2012).
Misra, S. et al. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes. ACS Nano 6, 5465–5473 (2012).
Radvanyi, E. et al. Study of lithiation mechanisms in silicon electrodes by auger electron spectroscopy. J. Mater. Chem. A 1, 4956 (2013).
Jerliu, B. et al. Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry. Phys. Chem. Chem. Phys. 20, 23480–23491 (2018).
Loaiza, L. C. et al. Electrochemical lithiation of Ge: New insights by operando spectroscopy and diffraction. J. Phys. Chem. C 122, 3709–3718 (2018).
Liu, X., Wu, X.-Y., Chang, B. & Wang, K.-X. Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020).
Abel, P. R., Lin, Y.-M., Celio, H., Heller, A. & Mullins, C. B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation. ACS Nano 6, 2506–2516 (2012).
Roy, P. & Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3, 2454–2484 (2015).
Rousselot, S. et al. Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries. J. Power Sour. 202, 262–268 (2012).