• Fraisl, D. et al. Mapping citizen science contributions to the UN sustainable development goals. Sustain. Sci. 15, 1735–1751 (2020). This is the first article to quantitatively assess the potential of citizen science for SDG indicator monitoring.


    Google Scholar
     

  • Haklay, M. et al. Contours of citizen science: a vignette study. R. Soc. Open Sci. 8, 202108 (2021). This article comprehensively explores the diverse perceptions of citizen science.

    ADS 

    Google Scholar
     

  • Kullenberg, C. & Kasperowski, D. What is citizen science? — A scientometric meta-analysis. PLoS ONE 11, e0147152 (2016). This article analyses the main topical focal points of citizen science.


    Google Scholar
     

  • Lemmens, R., Antoniou, V., Hummer, P. & Potsiou, C. in The Science of Citizen Science (eds. Vohland, K. et al.) 461–474 (Springer International Publishing, 2021).

  • Wynn, J. Citizen Science In The Digital Age: Rhetoric, Science, And Public Engagement (Univ. Alabama Press, 2017).

  • Roser, M. & Ortiz-Ospina, E. Literacy. Our World in Data https://ourworldindata.org/literacy (2016).

  • Pateman, R., Dyke, A. & West, S. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 6, 9 (2021).


    Google Scholar
     

  • Haklay, M. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 13–33 (Springer International Publishing, 2021).

  • Odenwald, S. A citation study of citizen science projects in space science and astronomy. Citiz. Sci. Theory Pract. 3, 5 (2018).


    Google Scholar
     

  • Bedessem, B., Julliard, R. & Montuschi, E. Measuring epistemic success of a biodiversity citizen science program: a citation study. PLoS ONE 16, e0258350 (2021).


    Google Scholar
     

  • Gardiner, M. M. & Roy, H. E. The role of community science in entomology. Annu. Rev. Entomol. 67, 437–456 (2022).


    Google Scholar
     

  • Kasperowski, D. & Hillman, T. The epistemic culture in an online citizen science project: programs, antiprograms and epistemic subjects. Soc. Stud. Sci. 48, 564–588 (2018).


    Google Scholar
     

  • Lambers, K., Verschoof-van der Vaart, W. & Bourgeois, Q. Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote. Sens. 11, 794 (2019).

    ADS 

    Google Scholar
     

  • Froeling, F. et al. Narrative review of citizen science in environmental epidemiology: setting the stage for co-created research projects in environmental epidemiology. Environ. Int. 152, 106470 (2021).


    Google Scholar
     

  • Hilton, N. H. Stimmen: a citizen science approach to minority language sociolinguistics. Linguist. Vanguard. 7, 20190017 (2021).


    Google Scholar
     

  • Maisonneuve, N., Stevens, M., Niessen, M. E. & Steels, L. in Information Technologies in Environmental Engineering (eds Athanasiadis, I. N., Rizzoli, A. E., Mitkas, P. A. & Gómez, J. M.) 215–228 (Springer, 2009).

  • Arias, R., Capelli, L. & Diaz Jimenez, C. A new methodology based on citizen science to improve environmental odour management. Chem. Eng. Trans. 68, 7–12 (2018).


    Google Scholar
     

  • Nascimento, S., Rubio Iglesias, J. M., Owen, R., Schade, S. & Shanley, L. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hecker, S. et al.) 219–240 (UCL Press, 2018).

  • Den Broeder, L., Devilee, J., Van Oers, H., Schuit, A. J. & Wagemakers, A. Citizen Science for public health. Health Promot. Int. 33, 505–514 (2018).


    Google Scholar
     

  • Bio Innovation Service. Citizen Science For Environmental Policy: Development Of An EU Wide Inventory And Analysis Of Selected Practices (Publications Office, 2018).

  • Mielke, J., Vermaßen, H. & Ellenbeck, S. Ideals, practices, and future prospects of stakeholder involvement in sustainability science. Proc. Natl Acad. Sci. USA 114, E10648–E10657 (2017).


    Google Scholar
     

  • Pocock, M. J. O. et al. A vision for global biodiversity monitoring with citizen science. Adv. Ecol. Res. 59, 169–223 (2018). This article describes the opportunities of citizen science for biodiversity research.


    Google Scholar
     

  • Isaac, N. J. B., Strien, A. J., August, T. A., Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014). This article describes bias-correction approaches for ecological trend estimates.


    Google Scholar
     

  • Tengö, M., Austin, B. J., Danielsen, F. & Fernández-Llamazares, Á. Creating synergies between citizen science and Indigenous and local knowledge. BioScience 71, 503–518 (2021).


    Google Scholar
     

  • Krick, E. Citizen experts in participatory governance: democratic and epistemic assets of service user involvement, local knowledge and citizen science. Curr. Sociol. https://doi.org/10.1177/00113921211059225 (2021).

    Article 

    Google Scholar
     

  • Danielsen, F. et al. in Citizen Science (eds Hecker, S. et al.) 110–123 (UCL Press, 2018).

  • Luzar, J. B. et al. Large-scale environmental monitoring by Indigenous peoples. BioScience 61, 771–781 (2011).


    Google Scholar
     

  • UNESCO. UNESCO recommendation on open science. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en (2021).

  • Wehn, U. et al. Impact assessment of citizen science: state of the art and guiding principles for a consolidated approach. Sustain. Sci. 16, 1683–1699 (2021). This article presents guidelines for a common approach in assessing citizen science impacts.


    Google Scholar
     

  • Aristeidou, M. & Herodotou, C. Online citizen science: a systematic review of effects on learning and scientific literacy. Citiz. Sci. Theory Pract. 5, 11 (2020).


    Google Scholar
     

  • Peter, M., Diekötter, T. & Kremer, K. Participant outcomes of biodiversity citizen science projects: a systematic literature review. Sustainability 11, 2780 (2019).


    Google Scholar
     

  • Turrini, T., Dörler, D., Richter, A., Heigl, F. & Bonn, A. The threefold potential of environmental citizen science — generating knowledge, creating learning opportunities and enabling civic participation. Biol. Conserv. 225, 176–186 (2018).


    Google Scholar
     

  • ECSA. Ten principles of citizen science. ECSA https://zenodo.org/record/5127534 (2015).

  • Haklay, M. et al. ECSA’s characteristics of citizen science. ECSA https://zenodo.org/record/3758668 (2020).

  • Danielsen, F. Community-based Monitoring In The Arctic (Univ. Alaska Press, 2020).

  • Cooper, C. B. et al. Inclusion in citizen science: the conundrum of rebranding. Science 372, 1386–1388 (2021). This article discusses issues around justice, equity, diversity and inclusion related to citizen science.

    ADS 

    Google Scholar
     

  • Eitzel, M. V. et al. Citizen science terminology matters: exploring key terms. Citiz. Sci. Theory Pract. 2, 1 (2017). This article highlights how choice of concepts and terms affects knowledge creation.


    Google Scholar
     

  • Bonney, R. et al. Citizen science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977–984 (2009). This article presents an early model for building and operating citizen science projects.


    Google Scholar
     

  • Haklay, M. in Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice (eds Sui, D., Elwood, S. & Goodchild, M.) 105–122 (Springer, 2013).

  • Wiggins, A. & Crowston, K. From conservation to crowdsourcing: a typology of citizen science. In 44th Hawaii Int. Conf. on System Sciences 1–10 (IEEE, 2011).

  • Shirk, J. L. et al. Public participation in scientific research: a framework for deliberate design. Ecol. Soc. 17, art29 (2012). This article describes multiple forms of public participation in science.


    Google Scholar
     

  • Tweddle, J. C., Robinson, L. D., Pocock, M. J. O. & Roy, H. E. Guide to citizen science: developing, implementing and evaluating citizen science to study biodiversity and the environment in the UK. UK Environmental Observation Framework https://www.ceh.ac.uk/sites/default/files/citizenscienceguide.pdf (2012).

  • Wiggins, A. et al. Data management guide for public participation in scientific research. DataONE https://old.dataone.org/sites/all/documents/DataONE-PPSR-DataManagementGuide.pdf (2013). This document describes essential steps of the data management life cycle.

  • Silvertown, J., Buesching, C. D., Jacobson, S. K. & Rebelo, T. in Key Topics in Conservation Biology Vol. 2 (eds Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).

  • Pocock, M. J. O., Chapman, D. S., Sheppard, L. J. & Roy, H. E. Choosing and using citizen science: a guide to when and how to use citizen science to monitor biodiversity and the environment. SEPA https://www.ceh.ac.uk/sites/default/files/sepa_choosingandusingcitizenscience_interactive_4web_final_amended-blue1.pdf (2014).

  • Participatory Monitoring and Management Partnership (PMMP). Manaus Letter: recommendations for the participatory monitoring of biodiversity. Participatory Monitoring and Management Partnership (PMMP) https://doi.org/10.25607/OBP-965 (2015).

  • Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F. Handbook Of Citizen Science In Ecology And Conservation (Univ. California Press, 2020).

  • US GSA. Citizen science toolkit: basic steps for your project planning. citizenscience.gov https://www.citizenscience.gov/toolkit/howto/ (2022).

  • García, F. S. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 419–437 (Springer International Publishing, 2021).

  • Van Brussel, S. & Huyse, H. Citizen science on speed? Realising the triple objective of scientific rigour, policy influence and deep citizen engagement in a large-scale citizen science project on ambient air quality in Antwerp. J. Environ. Plan. Manag. 62, 534–551 (2019).


    Google Scholar
     

  • de Sherbinin, A. et al. The critical importance of citizen science data. Front. Clim. 3, 650760 (2021).


    Google Scholar
     

  • Hyder, K., Townhill, B., Anderson, L. G., Delany, J. & Pinnegar, J. K. Can citizen science contribute to the evidence-base that underpins marine policy? Mar. Policy 59, 112–120 (2015).


    Google Scholar
     

  • Wehn, U. et al. Capturing and communicating impact of citizen science for policy: a storytelling approach. J. Environ. Manag. 295, 113082 (2021).


    Google Scholar
     

  • van Strien, A. J., van Swaay, C. A. M. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).


    Google Scholar
     

  • Laso Bayas, J. C. et al. Crowdsourcing LUCAS: citizens generating reference land cover and land use data with a mobile app. Land 9, 446 (2020).


    Google Scholar
     

  • Cooper, C. B. Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology. Int. J. Biometeorol. 58, 1415–1419 (2014).

    ADS 

    Google Scholar
     

  • Pettibone, L. et al. Citizen Science For All. A Guide For Citizen Science Practitioners (Deutsches Zentrum für Integrative Biodiversitätsforschung, Helmholtz-Zentrum für Umweltforschung, Berlin-Brandenburgisches Institut für Biodiversitätsforschung, Museum für Naturkunde, Leibniz-Institut, 2016).

  • Pernat, N. et al. How media presence triggers participation in citizen science — the case of the mosquito monitoring project ‘Mückenatlas’. PLoS ONE 17, e0262850 (2022).


    Google Scholar
     

  • Crowston, K. & Prestopnik, N. R. Motivation and data quality in a citizen science game: a design science evaluation. In 46th Hawaii Int. Conf. on System Sciences 450–459 (IEEE, 2013).

  • Funder, M., Danielsen, F., Ngaga, Y., Nielsen, M. R. & Poulsen, M. K. Reshaping conservation: the social dynamics of participatory monitoring in Tanzania’s community-managed forests. Conserv. Soc. 11, 218–232 (2013).


    Google Scholar
     

  • Deterding, S. Gamification: designing for motivation. Interactions 19, 14–17 (2012).


    Google Scholar
     

  • West, S. & Pateman, R. Recruiting and retaining participants in citizen science: what can be learned from the volunteering literature? Citiz. Sci. Theory Pract. 1, 15 (2016). This article discusses participant motivations for engagement and volunteering.


    Google Scholar
     

  • Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding motivations for citizen science. Final report on behalf of UKEOF. SEI https://www.sei.org/publications/understanding-motivations-for-citizen-science/ (2016).

  • Baruch, A., May, A. & Yu, D. The motivations, enablers and barriers for voluntary participation in an online crowdsourcing platform. Comput. Hum. Behav. 64, 923–931 (2016).


    Google Scholar
     

  • Larson, L. R. et al. The diverse motivations of citizen scientists: does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 242, 108428 (2020).


    Google Scholar
     

  • Danielsen, F. et al. The concept, practice, application, and results of locally based monitoring of the environment. BioScience 71, 484–502 (2021). This article summarizes the potential and intricacies of community-led citizen science.


    Google Scholar
     

  • Salmon, R. A., Rammell, S., Emeny, M. T. & Hartley, S. Citizens, scientists, and enablers: a tripartite model for citizen science projects. Diversity 13, 309 (2021).


    Google Scholar
     

  • Bowser, A., Shilton, K., Preece, J. & Warrick, E. Accounting for privacy in citizen science: ethical research in a context of openness. In Proc. 2017 ACM Conf. on Computer Supported Cooperative Work and Social Computing 2124–2136 (ACM, 2017).

  • Ward-Fear, G., Pauly, G. B., Vendetti, J. E. & Shine, R. Authorship protocols must change to credit citizen scientists. Trends Ecol. Evol. 35, 187–190 (2020).


    Google Scholar
     

  • Pandya, R. E. A framework for engaging diverse communities in citizen science in the US. Front. Ecol. Environ. 10, 314–317 (2012).


    Google Scholar
     

  • Sorensen, A. E. et al. Reflecting on efforts to design an inclusive citizen science project in West Baltimore. Citiz. Sci. Theory Pract. 4, 13 (2019).


    Google Scholar
     

  • Bonney, R., Phillips, T. B., Ballard, H. L. & Enck, J. W. Can citizen science enhance public understanding of science? Public. Underst. Sci. 25, 2–16 (2016).


    Google Scholar
     

  • Hermoso, M. I., Martin, V. Y., Gelcich, S., Stotz, W. & Thiel, M. Exploring diversity and engagement of divers in citizen science: insights for marine management and conservation. Mar. Policy 124, 104316 (2021).


    Google Scholar
     

  • Barahona-Segovia, R. M. et al. Combining citizen science with spatial analysis at local and biogeographical scales for the conservation of a large-size endemic invertebrate in temperate forests. For. Ecol. Manag. 497, 119519 (2021).


    Google Scholar
     

  • Bowser, A., Wiggins, A., Shanley, L., Preece, J. & Henderson, S. Sharing data while protecting privacy in citizen science. Interactions 21, 70–73 (2014).


    Google Scholar
     

  • Wiggins, A., Newman, G., Stevenson, R. D. & Crowston, K. Mechanisms for data quality and validation in citizen science. In IEEE Seventh Int. Conf. on e-Science Workshops 14–19 (IEEE, 2011).

  • Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016). This article discusses common assumptions and evidence about citizen science data quality.


    Google Scholar
     

  • Downs, R. R., Ramapriyan, H. K., Peng, G. & Wei, Y. Perspectives on citizen science data quality. Front. Clim. 3, 615032 (2021). This article describes perspectives on quality assessment and control issues.


    Google Scholar
     

  • Fritz, S. et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2, 922–930 (2019). This article identifies the full potential of citizen science for SDG monitoring and implementation.


    Google Scholar
     

  • Phillips, T., Ferguson, M., Minarchek, M., Porticella, N. & Bonney, R. Evaluating learning outcomes from citizen science. The Cornell Lab of Ornithology https://www.birds.cornell.edu/citizenscience/wp-content/uploads/2018/10/USERS-GUIDE_linked.pdf (2014).

  • Tredick, C. A. et al. A rubric to evaluate citizen-science programs for long-term ecological monitoring. BioScience 67, 834–844 (2017).


    Google Scholar
     

  • Kieslinger, B. et al. in Citizen Science — Innovation in Open Science, Society and Policy (eds Hekler, S., Haklay, M., Bowser, A., Vogel, J. & Bonn, A.) 81–95 (UCL Press, 2018).

  • Schaefer, T., Kieslinger, B., Brandt, M. & van den Bogaert, V. in The Science of Citizen Science (eds Vohland, K. et al.) 495–514 (Springer International Publishing, 2021).

  • Prysby, M. & Oberhauser, K. S. in The Monarch Butterfly: Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 9–20 (Cornell Univ. Press, 2004).

  • Danielsen, F. et al. A multicountry assessment of tropical resource monitoring by local communities. BioScience 64, 236–251 (2014). The article presents the largest quantitative study to date of the accuracy of citizen science across the three tropical continents.


    Google Scholar
     

  • Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).


    Google Scholar
     

  • Serret, H., Deguines, N., Jang, Y., Lois, G. & Julliard, R. Data quality and participant engagement in citizen science: comparing two approaches for monitoring pollinators in France and South Korea. Citiz. Sci. Theory Pract. 4, 22 (2019).


    Google Scholar
     

  • Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. J. Soc. Conserv. Biol 25, 1148–1154 (2011).


    Google Scholar
     

  • Deguines, N., de Flores, M., Loïs, G., Julliard, R. & Fontaine, C. Fostering close encounters of the entomological kind. Front. Ecol. Environ. 16, 202–203 (2018).


    Google Scholar
     

  • van der Wal, R., Sharma, N., Mellish, C., Robinson, A. & Siddharthan, A. The role of automated feedback in training and retaining biological recorders for citizen science. Conserv. Biol. J. Soc. Conserv. Biol. 30, 550–561 (2016).


    Google Scholar
     

  • Watson, D. & Floridi, L. Crowdsourced science: sociotechnical epistemology in the e-research paradigm. Synthese 195, 741–764 (2018).

    MathSciNet 

    Google Scholar
     

  • Silvertown, J. et al. Crowdsourcing the identification of organisms: a case-study of iSpot. ZooKeys 480, 125–146 (2015).


    Google Scholar
     

  • Edgar, G. & Stuart-Smith, R. Ecological effects of marine protected areas on rocky reef communities — a continental-scale analysis. Mar. Ecol. Prog. Ser. 388, 51–62 (2009).

    ADS 

    Google Scholar
     

  • Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).


    Google Scholar
     

  • Johnson, N., Druckenmiller, M. L., Danielsen, F. & Pulsifer, P. L. The use of digital platforms for community-based monitoring. BioScience 71, 452–466 (2021).


    Google Scholar
     

  • Hochmair, H. H., Scheffrahn, R. H., Basille, M. & Boone, M. Evaluating the data quality of iNaturalist termite records. PLoS ONE 15, e0226534 (2020).


    Google Scholar
     

  • Torres, A.-C., Bedessem, B., Deguines, N. & Fontaine, C. Online data sharing with virtual social interactions favor scientific and educational successes in a biodiversity citizen science project. J. Responsible Innov. https://doi.org/10.1080/23299460.2021.2019970 (2022).

  • Hochachka, W. M. et al. Data-intensive science applied to broad-scale citizen science. Trends Ecol. Evol. 27, 130–137 (2012).


    Google Scholar
     

  • Robinson, O. J., Ruiz-Gutierrez, V. & Fink, D. Correcting for bias in distribution modelling for rare species using citizen science data. Divers. Distrib. 24, 460–472 (2018).


    Google Scholar
     

  • Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).


    Google Scholar
     

  • Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves? PLoS ONE 10, e0139600 (2015).


    Google Scholar
     

  • Johnston, A., Fink, D., Hochachka, W. M. & Kelling, S. Estimates of observer expertise improve species distributions from citizen science data. Methods Ecol. Evol. 9, 88–97 (2018).


    Google Scholar
     

  • Giraud, C., Calenge, C., Coron, C. & Julliard, R. Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics 72, 649–658 (2016).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).


    Google Scholar
     

  • Kelling, S., Yu, J., Gerbracht, J. & Wong, W.-K. Emergent filters: automated data verification in a large-scale citizen science project. In IEEE Seventh Int. Conf. on e-Science Workshops 20–27 (IEEE, 2011).

  • Kelling, S. et al. Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).


    Google Scholar
     

  • Palmer, J. R. B. et al. Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. Nat. Commun. 8, 916 (2017).

    ADS 

    Google Scholar
     

  • Callaghan, C. T., Poore, A. G. B., Hofmann, M., Roberts, C. J. & Pereira, H. M. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073 (2021).

    ADS 

    Google Scholar
     

  • Brashares, J. S. & Sam, M. K. How much is enough? Estimating the minimum sampling required for effective monitoring of African reserves. Biodivers. Conserv. 14, 2709–2722 (2005).


    Google Scholar
     

  • Andrianandrasana, H. T., Randriamahefasoa, J., Durbin, J., Lewis, R. E. & Ratsimbazafy, J. H. Participatory ecological monitoring of the Alaotra Wetlands in Madagascar. Biodivers. Conserv. 14, 2757–2774 (2005).


    Google Scholar
     

  • Jiguet, F., Devictor, V., Julliard, R. & Couvet, D. French citizens monitoring ordinary birds provide tools for conservation and ecological sciences. Acta Oecologica 44, 58–66 (2012).

    ADS 

    Google Scholar
     

  • Martin, G., Devictor, V., Motard, E., Machon, N. & Porcher, E. Short-term climate-induced change in French plant communities. Biol. Lett. 15, 20190280 (2019).


    Google Scholar
     

  • Guillera-Arroita, G. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40, 281–295 (2017).


    Google Scholar
     

  • Gregory, R. D. et al. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269–288 (2005).


    Google Scholar
     

  • Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).


    Google Scholar
     

  • Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).


    Google Scholar
     

  • Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35, 56–67 (2020).


    Google Scholar
     

  • Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 6, 1967–1976 (2016).


    Google Scholar
     

  • Desaegher, J., Nadot, S., Fontaine, C. & Colas, B. Floral morphology as the main driver of flower-feeding insect occurrences in the Paris region. Urban. Ecosyst. 21, 585–598 (2018).


    Google Scholar
     

  • Osenga, E. C., Vano, J. A. & Arnott, J. C. A community-supported weather and soil moisture monitoring database of the Roaring Fork catchment of the Colorado River Headwaters. Hydrol. Process. 35, e14081 (2021).


    Google Scholar
     

  • Ryan, S. F. et al. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. R. Soc. B 285, 20181977 (2018).


    Google Scholar
     

  • Paap, T., Wingfield, M. J., Burgess, T. I., Hulbert, J. M. & Santini, A. Harmonising the fields of invasion science and forest pathology. NeoBiota 62, 301–332 (2020).


    Google Scholar
     

  • Newman, G. et al. The future of citizen science: emerging technologies and shifting paradigms. Front. Ecol. Environ. 10, 298–304 (2012). This article gives a history account of the development of citizen science.


    Google Scholar
     

  • Clark, G. F. et al. A visualization tool for citizen-science marine debris big data. Water Int. 46, 211–223 (2021).


    Google Scholar
     

  • Gray, A., Robertson, C. & Feick, R. CWDAT — an open-source tool for the visualization and analysis of community-generated water quality data. ISPRS Int. J. Geo-Inf. 10, 207 (2021).


    Google Scholar
     

  • Hoyer, T., Moritz, J. & Moser, J. Visualization and perception of data gaps in the context of citizen science projects. KN J. Cartogr. Geogr. Inf. 71, 155–172 (2021).


    Google Scholar
     

  • Liu, H.-Y., Dörler, D., Heigl, F. & Grossberndt, S. in The Science of Citizen Science (eds Vohland, K. et al.) 439–459 (Springer International Publishing, 2021).

  • Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290 (2012).


    Google Scholar
     

  • Kobori, H. et al. Citizen science: a new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).


    Google Scholar
     

  • Clavero, M. & Revilla, E. Mine centuries-old citizen science. Nature 510, 35–35 (2014).

    ADS 

    Google Scholar
     

  • Kalle, R., Pieroni, A., Svanberg, I. & Sõukand, R. Early citizen science action in ethnobotany: the case of the folk medicine collection of Dr. Mihkel Ostrov in the territory of present-day Estonia, 1891–1893. Plants 11, 274 (2022).


    Google Scholar
     

  • Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017). This article highlights the magnitude of citizen science contributions to global biodiversity datasets.


    Google Scholar
     

  • Groom, Q., Weatherdon, L. & Geijzendorffer, I. R. Is citizen science an open science in the case of biodiversity observations? J. Appl. Ecol. 54, 612–617 (2017).


    Google Scholar
     

  • Cooper, C. B., Shirk, J. & Zuckerberg, B. The invisible prevalence of citizen science in global research: migratory birds and climate change. PLoS ONE 9, e106508 (2014).

    ADS 

    Google Scholar
     

  • Morales, C. L. et al. Does climate change influence the current and future projected distribution of an endangered species? The case of the southernmost bumblebee in the world. J. Insect Conserv. 26, 257–269 (2022).


    Google Scholar
     

  • Campbell, H. & Engelbrecht, I. The Baboon Spider Atlas — using citizen science and the ‘fear factor’ to map baboon spider (Araneae: Theraphosidae) diversity and distributions in southern Africa. Insect Conserv. Divers. 11, 143–151 (2018).


    Google Scholar
     

  • Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. BioScience 71, 55–63 (2021).


    Google Scholar
     

  • Croft, S., Chauvenet, A. L. M. & Smith, G. C. A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE 12, e0176339 (2017).


    Google Scholar
     

  • Hsing, P. et al. Economical crowdsourcing for camera trap image classification. Remote Sens. Ecol. Conserv. 4, 361–374 (2018).


    Google Scholar
     

  • Altwegg, R. & Nichols, J. D. Occupancy models for citizen-science data. Methods Ecol. Evol. 10, 8–21 (2019).


    Google Scholar
     

  • Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: the integration of citizen science and artificial intelligence. Animals 10, 132 (2020).


    Google Scholar
     

  • Hsing, P.-Y. et al. Citizen scientists: school students conducting, contributing to and communicating ecological research — experiences of a school–university partnership. Sch. Sci. Rev. 101, 67–74 (2020).


    Google Scholar
     

  • Degnan, L. MammalWeb citizen science wildlife monitoring. Vimeo https://vimeo.com/237565215 (2017).

  • Hsing, P.-Y. et al. Large-scale mammal monitoring: the potential of a citizen science camera-trapping project in the UK. Ecol. Solut. Evid. (in the press).

  • Chapman, H. Spotting wildlife helps teens cope with life in lockdown. The Northern Echo https://www.thenorthernecho.co.uk/news/18459359.spotting-wildlife-helps-teens-cope-life-lockdown/ (2020).

  • McKie, R. How an army of ‘citizen scientists’ is helping save our most elusive animals. The Guardian https://www.theguardian.com/environment/2019/jul/28/britain-elusive-animals-fall-into-camera-trap-citizen-scientist (2019).

  • Deguines, N., Julliard, R., de Flores, M. & Fontaine, C. The whereabouts of flower visitors: contrasting land-use preferences revealed by a country-wide survey based on citizen science. PLoS ONE 7, e45822 (2012).

    ADS 

    Google Scholar
     

  • Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).

    ADS 

    Google Scholar
     

  • Aparicio Camín, N., Comaposada, A., Paul, E., Maceda-Veiga, A. & Piera, J. Analysis of species richness in Barcelona beaches using a citizen science based approach (Sociedad Ibérica de Ecología, 2019).

  • Chao, A., Colwell, R. K., Chiu, C. & Townsend, D. Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list. Methods Ecol. Evol. 8, 1221–1232 (2017).


    Google Scholar
     

  • Mominó, J. M., Piera, J. & Jurado, E. in Analyzing the Role of Citizen Science in Modern Research (eds Ceccaroni, L. & Piera, J.) 231–245 (IGI Global, 2017).

  • Salvador, X. et al. Guia Participativa Marina del Barcelonès (Marcombo, 2021).

  • Carayannis, E. G., Barth, T. D. & Campbell, D. F. The Quintuple Helix innovation model: global warming as a challenge and driver for innovation. J. Innov. Entrep. 1, 2 (2012).


    Google Scholar
     

  • Goodchild, M. F. Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007).


    Google Scholar
     

  • Capineri, C. et al. European Handbook of Crowdsourced Geographic Information (Ubiquity Press, 2016).

  • Skarlatidou, A. & Haklay, M. Geographic Citizen Science Design: No One Left Behind (UCL Press, 2021).

  • Haklay, M. & Weber, P. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7, 12–18 (2008).


    Google Scholar
     

  • Jeddi, Z. et al. Citizen seismology in the Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00139 (2020).

  • Eurostat. LUCAS — Land use and land cover survey. eurostat https://ec.europa.eu/eurostat/statistics-explained/index.php?title=LUCAS_-_Land_use_and_land_cover_survey (2021).

  • Laso Bayas, J. et al. Crowdsourcing in-situ data on land cover and land use using gamification and mobile technology. Remote. Sens. 8, 905 (2016).

    ADS 

    Google Scholar
     

  • EU. Regulation (EU) 2016/679 Of The European Parliament And Of The Council, Article 5(c). EU https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).

  • Danielsen, F. et al. Community monitoring for REDD+: international promises and field realities. Ecol. Soc. 18, 41 (2013).


    Google Scholar
     

  • Boissière, M., Herold, M., Atmadja, S. & Sheil, D. The feasibility of local participation in measuring, reporting and verification (PMRV) for REDD. PLoS ONE 12, e0176897 (2017).


    Google Scholar
     

  • Walker, D. W., Smigaj, M. & Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. WIREs Water 8, e1488 (2021).


    Google Scholar
     

  • Danielsen, F. et al. Community monitoring of natural resource systems and the environment. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-012220-022325 (2022).

  • Pecl, G. T. et al. Redmap Australia: challenges and successes with a large-scale citizen science-based approach to ecological monitoring and community engagement on climate change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00349 (2019).

  • Shinbrot, X. A. et al. Quiahua, the first citizen science rainfall monitoring network in Mexico: filling critical gaps in rainfall data for evaluating a payment for hydrologic services program. Citiz. Sci. Theory Pract. 5, 19 (2020).


    Google Scholar
     

  • Little, K. E., Hayashi, M. & Liang, S. Community-based groundwater monitoring network using a citizen-science approach. Groundwater 54, 317–324 (2016).


    Google Scholar
     

  • Wolff, E. The promise of a “people-centred” approach to floods: types of participation in the global literature of citizen science and community-based flood risk reduction in the context of the Sendai Framework. Prog. Disaster Sci. 10, 100171 (2021).


    Google Scholar
     

  • Hauser, D. D. W. et al. Co-production of knowledge reveals loss of Indigenous hunting opportunities in the face of accelerating Arctic climate change. Environ. Res. Lett. 16, 095003 (2021).

    ADS 

    Google Scholar
     

  • Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).

    ADS 

    Google Scholar
     

  • Robles, M. C. et al. Clouds around the world: how a simple citizen science data challenge became a worldwide success. Bull. Am. Meteorol. Soc. 101, E1201–E1213 (2020).


    Google Scholar
     

  • Beeden, R. J. et al. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef. Environ. Monit. Assess. 186, 8527–8540 (2014).


    Google Scholar
     

  • Miller-Rushing, A. J., Gallinat, A. S. & Primack, R. B. Creative citizen science illuminates complex ecological responses to climate change. Proc. Natl Acad. Sci. USA 116, 720–722 (2019).


    Google Scholar
     

  • Kress, W. J. et al. Citizen science and climate change: mapping the range expansions of native and exotic plants with the mobile app Leafsnap. BioScience 68, 348–358 (2018).


    Google Scholar
     

  • Kirchhoff, C. et al. Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Sci. Total Environ. 755, 142348 (2021).

    ADS 

    Google Scholar
     

  • Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).


    Google Scholar
     

  • Soil Survey Staff, Natural Resources Conservation Service & USDA. Web soil survey. USDA https://websoilsurvey.nrcs.usda.gov/ (2019).

  • Cooper, C. B., Hochachka, W. M. & Dhondt, A. A. in Citizen Science (eds Dickinson, J. L. & Bonney, R.) 99–113 (Cornell Univ. Press, 2012).

  • Bastin, L., Schade, S. & Schill, C. in Mapping and the Citizen Sensor (eds Foody, G. et al.) 249–272 (Ubiquity Press, 2017).

  • Resnik, D. B., Elliott, K. C. & Miller, A. K. A framework for addressing ethical issues in citizen science. Environ. Sci. Policy 54, 475–481 (2015). This article outlines basic considerations for ethical research practices in citizen science.


    Google Scholar
     

  • Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. Lond. B 268, 2473–2478 (2001).


    Google Scholar
     

  • Lotfian, M., Ingensand, J. & Brovelli, M. A. The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13, 8087 (2021).


    Google Scholar
     

  • Kissling, W. D. et al. Towards global interoperability for supporting biodiversity research on essential biodiversity variables (EBVs). Biodiversity 16, 99–107 (2015).


    Google Scholar
     

  • Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).


    Google Scholar
     

  • Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR principles for Indigenous data futures. Sci. Data 8, 108 (2021).


    Google Scholar
     

  • UKEOF Citizen Science Working. Data management planning for citizen science. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1406 (2020). This document provides advice about the development of data management plans.

  • Hansen, J. S. et al. Research data management challenges in citizen science projects and recommendations for library support services. A scoping review and case study. Data Sci. J. 20, 25 (2021).


    Google Scholar
     

  • Croucher, M., Graham, L., James, T., Krystalli, A. & Michonneau, F. A guide to reproducible code. British Ecological Society https://www.britishecologicalsociety.org/publications/guides-to/ (2019).

  • Parker, A., Dosemagen, S., Molloy, J., Bowser, A. & Novak, A. Open hardware: an opportunity to build better science. Wilson Center https://www.wilsoncenter.org/publication/open-hardware-opportunity-build-better-science (2021).

  • Palmer, M. S., Dewey, J. & Huebner, S. Snapshot Safari educational materials. Libraries Digital Conservancy https://hdl.handle.net/11299/217102 (2020).

  • Campbell, J., Bowser, A., Fraisl, D. & Meloche, M. in Data for Good Exchange (IIASA, 2019).

  • Fraisl, D. et al. Demonstrating the potential of Picture Pile as a citizen science tool for SDG monitoring. Environ. Sci. Policy 128, 81–93 (2022).


    Google Scholar
     

  • Humm, C. & Schrögel, P. Science for all? Practical recommendations on reaching underserved audiences. Front. Commun. https://doi.org/10.3389/fcomm.2020.00042 (2020).

    Article 

    Google Scholar
     

  • Clary, E. G. & Snyder, M. The motivations to volunteer: theoretical and practical considerations. Curr. Dir. Psychol. Sci. 8, 156–159 (1999).


    Google Scholar
     

  • Hobbs, S. J. & White, P. C. L. Motivations and barriers in relation to community participation in biodiversity recording. J. Nat. Conserv. 20, 364–373 (2012).


    Google Scholar
     

  • Lukyanenko, R., Wiggins, A. & Rosser, H. K. Citizen science: an information quality research frontier. Inf. Syst. Front. 22, 961–983 (2020).


    Google Scholar
     

  • Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796 (2016).


    Google Scholar
     

  • Petrovan, S. O., Vale, C. G. & Sillero, N. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution? Biodivers. Conserv. 29, 1767–1781 (2020).


    Google Scholar
     

  • Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in Citizen Science data reporting: implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).

    ADS 

    Google Scholar
     

  • Cretois, B. et al. Identifying and correcting spatial bias in opportunistic citizen science data for wild ungulates in Norway. Ecol. Evol. 11, 15191–15204 (2021).


    Google Scholar
     

  • Haklay, M. E. in European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 35–44 (Ubiquity Press, 2016).

  • Haklay, M. in Citizen Science (eds Haklay, M. et al.) 52–62 (UCL Press, 2018).

  • Schade, S., Herding, W., Fellermann, A. & Kotsev, A. Joint statement on new opportunities for air quality sensing — lower-cost sensors for public authorities and citizen science initiatives. Res. Ideas Outcomes 5, e34059 (2019).


    Google Scholar
     

  • Moustard, F. et al. Using Sapelli in the field: methods and data for an inclusive citizen science. Front. Ecol. Evol https://doi.org/10.3389/fevo.2021.638870 (2021).

    Article 

    Google Scholar
     

  • Pettibone, L. et al. Transdisciplinary sustainability research and citizen science: options for mutual learning. GAIA — Ecol. Perspect. Sci. Soc. 27, 222–225 (2018).


    Google Scholar
     

  • Low, R., Schwerin, T. & Codsi, R. Citizen Science As A Tool For Transdisciplinary Research And Stakeholder Engagement (ESSOAr, 2020).

  • Ottinger, G. in The Routledge Handbook of the Political Economy of Science (eds Tyfield, D., Lave, R., Randalls, S. & Thorpe, C.) 351–364 (Routledge, 2017).

  • Rey-Mazón, P., Keysar, H., Dosemagen, S., D’Ignazio, C. & Blair, D. Public lab: community-based approaches to urban and environmental health and justice. Sci. Eng. Ethics 24, 971–997 (2018).


    Google Scholar
     

  • Brown, A., Franken, P., Bonner, S., Dolezal, N. & Moross, J. Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 36, S82–S101 (2016).


    Google Scholar
     

  • Pocock, M. J. O. et al. Developing the global potential of citizen science: assessing opportunities that benefit people, society and the environment in East Africa. J. Appl. Ecol. 56, 274–281 (2019).


    Google Scholar
     

  • Gollan, J., de Bruyn, L. L., Reid, N. & Wilkie, L. Can volunteers collect data that are comparable to professional scientists? A study of variables used in monitoring the outcomes of ecosystem rehabilitation. Environ. Manag. 50, 969–978 (2012).

    ADS 

    Google Scholar
     

  • van Noordwijk, T. C. G. E. et al. in The Science of Citizen Science (eds Vohland, K. et al.) 373–395 (Springer International Publishing, 2021).

  • Auerbach, J. et al. The problem with delineating narrow criteria for citizen science. Proc. Natl. Acad. Sci. USA 116, 15336–15337 (2019).


    Google Scholar
     

  • Gold, M., Wehn, U., Bilbao, A. & Hager, G. EU Citizen observatories landscape report II: addressing the challenges of awareness, acceptability, and sustainability. EU https://zenodo.org/record/4472670 (2020).

  • WeObserve Consortium. Roadmap for the uptake of the citizen observatories’ knowledge base. WeObserve Consortium https://zenodo.org/record/4646774 (2021).

  • UNECE. Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters (Aarhus Convention). UNECE https://unece.org/fileadmin/DAM/env/pp/documents/cep43e.pdf (1998).

  • UNECE. Draft updated recommendations on the more effective use of electronic information tools. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_E.pdf (2021).

  • UNECE. Draft updated recommendations on the more effective use of electronic information tools, Addendum. UNECE https://unece.org/sites/default/files/2021-08/ECE_MP.PP_2021_20_Add.1_E.pdf (2021).

  • UNEP. Measuring progress: environment and the SDGs. UNEP http://www.unep.org/resources/publication/measuring-progress-environment-and-sdgs (2021).

  • SDSN TReNDS. Strengthening measurement of marine litter in Ghana. How citizen science is helping to measure progress on SDG 14.1.1b. SDSN TReNDS https://storymaps.arcgis.com/stories/2622af0a0c7d4c709c3d09f4cc249f7d (2021).

  • Goudeseune, L. et al. Citizen science toolkit for biodiversity scientists. biodiversa https://zenodo.org/record/3979343 (2020).

  • Veeckman, C., Talboom, S., Gijsel, L., Devoghel, H. & Duerinckx, A. Communication in citizen science. A practical guide to communication and engagement in citizen science. SCivil https://www.scivil.be/sites/default/files/paragraph/files/2020-01/Scivil%20Communication%20Guide.pdf (2019).

  • Durham, E., Baker, S., Smith, M., Moore, E. & Morgan, V. BiodivERsA: stakeholder engagement handbook. biodiversa https://www.biodiversa.org/702 (2014).

  • WeObserve Consortium. WeObserve Cookbook. WeObserve Consortium https://zenodo.org/record/5493543 (2021).

  • Danielsen, F. et al. Testing focus groups as a tool for connecting Indigenous and local knowledge on abundance of natural resources with science-based land management systems. Conserv. Lett. 7, 380–389 (2014).


    Google Scholar
     

  • Elliott, K. C., McCright, A. M., Allen, S. & Dietz, T. Values in environmental research: citizens’ views of scientists who acknowledge values. PLoS ONE 12, e0186049 (2017).


    Google Scholar
     

  • Yamamoto, Y. T. Values, objectivity and credibility of scientists in a contentious natural resource debate. Public. Underst. Sci. 21, 101–125 (2012).


    Google Scholar
     

  • Danielsen, F. et al. in Handbook of Citizen Science in Ecology and Conservation (eds Lepczyk, C. A., Boyle, O. D., Vargo, T. L. V. & Noss, R. F.) 25–29 (Univ. California Press, 2020).

  • Eicken, H. et al. Connecting top-down and bottom-up approaches in environmental observing. BioScience 71, 467–483 (2021). This article highlights the benefits of linking community- and science/policy-led approaches.


    Google Scholar
     

  • Slough, T. et al. Adoption of community monitoring improves common pool resource management across contexts. Proc. Natl Acad. Sci. USA 118, e2015367118 (2021).


    Google Scholar
     

  • Wilderman, C. C., Barron, A. & Imgrund, L. Top down or bottom up? ALLARM’s experience with two operational models for community science. In 4th Natl Monitoring Conf. (National Water Quality Monitoring Council, 2004).

  • Johnson, N. et al. Community-based monitoring and Indigenous knowledge in a changing Arctic: a review for the sustaining Arctic Observing Networks. Ocean Best Practices https://repository.oceanbestpractices.org/handle/11329/1314 (2016).

  • Lau, J. D., Gurney, G. G. & Cinner, J. Environmental justice in coastal systems: perspectives from communities confronting change. Glob. Environ. Change 66, 102208 (2021).


    Google Scholar
     

  • Lyver, P. O. B. et al. An Indigenous community-based monitoring system for assessing forest health in New Zealand. Biodivers. Conserv. 26, 3183–3212 (2017).


    Google Scholar
     

  • Cuyler, C. et al. Using local ecological knowledge as evidence to guide management: a community-led harvest calculator for muskoxen in Greenland. Conserv. Sci. Pract. 2, e159 (2020).


    Google Scholar
     

  • Fox, J. A. Social accountability: what does the evidence really say? World Dev. 72, 346–361 (2015).


    Google Scholar
     

  • Wheeler, H. C. et al. The need for transformative changes in the use of Indigenous knowledge along with science for environmental decision-making in the Arctic. People Nat. 2, 544–556 (2020).


    Google Scholar
     

  • Storey, R. G., Wright-Stow, A., Kin, E., Davies-Colley, R. J. & Stott, R. Volunteer stream monitoring: do the data quality and monitoring experience support increased community involvement in freshwater decision making? Ecol. Soc. 21, art32 (2016).


    Google Scholar
     

  • Brofeldt, S. et al. Community-based monitoring of tropical forest crimes and forest resources using information and communication technology — experiences from Prey Lang, Cambodia. Citiz. Sci. Theory Pract. 3, 4 (2018).


    Google Scholar
     

  • Menton, M. & Le Billon, P. Environmental Defenders: Deadly Struggles For Life And Territory (Routledge, 2021).

  • Eastman, L. B., Hidalgo-Ruz, V., Macaya-Caquilpán, V., Núñez, P. & Thiel, M. The potential for young citizen scientist projects: a case study of Chilean schoolchildren collecting data on marine litter. J. Integr. Coast. Zone Manag. 14, 569–579 (2014).


    Google Scholar
     

  • Hidalgo-Ruz, V. & Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar. Environ. Res. 87–88, 12–18 (2013).


    Google Scholar
     

  • Kruse, K., Kiessling, T., Knickmeier, K., Thiel, M. & Parchmann, I. in Engaging Learners with Chemistry (eds Ilka P., Shirley S. & Jan A.) 225–240 (Royal Society of Chemistry, 2020).

  • Wichman, C. S. et al. Promoting pro-environmental behavior through citizen science? A case study with Chilean schoolchildren on marine plastic pollution. Mar. Policy 141, 105035 (2022).


    Google Scholar
     

  • Bravo, M. et al. Anthropogenic debris on beaches in the SE Pacific (Chile): results from a national survey supported by volunteers. Mar. Pollut. Bull. 58, 1718–1726 (2009).


    Google Scholar
     

  • Hidalgo-Ruz, V. et al. Spatio-temporal variation of anthropogenic marine debris on Chilean beaches. Mar. Pollut. Bull. 126, 516–524 (2018).


    Google Scholar
     

  • Honorato-Zimmer, D. et al. Mountain streams flushing litter to the sea — Andean rivers as conduits for plastic pollution. Environ. Pollut. 291, 118166 (2021).


    Google Scholar
     

  • Amenábar Cristi, M. et al. The rise and demise of plastic shopping bags in Chile — broad and informal coalition supporting ban as a first step to reduce single-use plastics. Ocean. Coast. Manag. 187, 105079 (2020).


    Google Scholar
     

  • Kiessling, T. et al. Plastic Pirates sample litter at rivers in Germany — riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 245, 545–557 (2019).


    Google Scholar
     

  • Kiessling, T. et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Total. Environ. 789, 147849 (2021).

    ADS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.