• Andersson, E., Häggström, J., Sima, M. & Stichel, S. Assessment of train-overturning risk due to strong cross-winds. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 218, 213–223 (2004).

    Article 

    Google Scholar
     

  • Fenerci, A. & Øiseth, O. Strong wind characteristics and dynamic response of a long-span suspension bridge during a storm. J. Wind Eng. Ind. Aerodyn. 172, 116–138 (2018).

    Article 

    Google Scholar
     

  • Kim, S.-J., Yoo, C.-H. & Kim, H.-K. Vulnerability assessment for the hazards of crosswinds when vehicles cross a bridge deck. J. Wind Eng. Ind. Aerodyn. 156, 62–71 (2016).

    Article 

    Google Scholar
     

  • Coleman, S. A. & Baker, C. J. The reduction of accident risk for high sided road vehicles in cross winds. J. Wind Eng. Ind. Aerodyn. 44, 2685–2695 (1992).

    Article 

    Google Scholar
     

  • Chen, S. R. & Cai, C. S. Accident assessment of vehicles on long-span bridges in windy environments. J. WInd Eng. Ind. Aerodyn. 92, 991–1024 (2004).

    Article 

    Google Scholar
     

  • Snæbjörnsson, JTh., Baker, C. J. & Sigbjörnsson, R. Probabilistic assessment of road vehicle safety in windy environments. J. Wind Eng. Ind. Aerodyn. 95, 1445–1462 (2007).

    Article 

    Google Scholar
     

  • Liao, H., Jing, H., Ma, C., Tao, Q. & Li, Z. Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley. J. Wind Eng. Ind. Aerodyn. 197, 104090 (2020).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Comparison of wind characteristics in different directions of deep-cut gorges based on field measurements. J. Wind Eng. Ind. Aerodyn. 212, 104595 (2021).

    Article 

    Google Scholar
     

  • Jiang, F. et al. Field measurement study of wind characteristics in mountain terrain: Focusing on sudden intense winds. J. Wind Eng. Ind. Aerodyn. 218, 104781 (2021).

    Article 

    Google Scholar
     

  • Li, Y. et al. Observations of periodic thermally-developed winds beside a bridge region in mountain terrain based on field measurement. J. Wind Eng. Ind. Aerodyn. 225, 104996 (2022).

    Article 

    Google Scholar
     

  • Fenerci, A., Øiseth, O. & Rønnquist, A. Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain. Eng. Struct. 147, 269–284 (2017).

    Article 

    Google Scholar
     

  • Lystad, T. M., Fenerci, A. & Øiseth, O. Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design. J. Wind Eng. Ind. Aerodyn. 179, 558–573 (2018).

    Article 

    Google Scholar
     

  • Li, Y., Hu, P., Cai, C. S., Zhang, M. & Qiang, S. Wind tunnel study of a sudden change of train wind loads due to the wind shielding effects of bridge towers and passing trains. J. Eng. Mech. 139, 1249–1259 (2013).


    Google Scholar
     

  • Zhang, J., Zhang, M., Li, Y., Huang, X. & Zheng, Z. Aerodynamics of high-sided vehicles on truss girder considering sheltering effect by wind tunnel tests. BJRBE 15, 66–88 (2020).

    Article 

    Google Scholar
     

  • Salati, L., Schito, P., Rocchi, D. & Sabbioni, E. Aerodynamic study on a heavy truck passing by a bridge pylon under crosswinds using CFD. J. Bridge Eng. 23, 04018065 (2018).

    Article 

    Google Scholar
     

  • Wang, Y., Zhang, Z., Zhang, Q., Hu, Z. & Su, C. Dynamic coupling analysis of the aerodynamic performance of a sedan passing by the bridge pylon in a crosswind. Appl. Math. Model. 89, 1279–1293 (2021).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • He, X. et al. Wind tunnel tests on the aerodynamic characteristics of vehicles on highway bridges. Adv. Struct. Eng. 23, 2882–2897 (2020).

    Article 

    Google Scholar
     

  • Li, H., Laima, S., Li, N., Ou, J. & Duan, Z. Correlation analysis of the wind of a cable-stayed bridge based on field monitoring. Wind Struct. 13, 529–556 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Ding, Y., Zhou, G., Li, A. & Deng, Y. Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data. Wind Struct. 17, 43–68 (2013).

    Article 

    Google Scholar
     

  • Yu, H., Wang, B., Li, Y. & Zhang, M. Driving risk of road vehicle shielded by bridge tower under strong crosswind. Nat. Hazards 96, 497–519 (2019).

    Article 

    Google Scholar
     

  • Zhang, M., Li, Y., Tang, H., Zhu, L. & Tao, Q. Field measurement of wind characteristics at bridge site in deep gorge with high altitude and high temperature difference. China J. Highw. Transp. 28, 60–65 (2015).


    Google Scholar
     

  • Yu, C., Li, Y., Zhang, M., Zhang, Y. & Zhai, G. Wind characteristics along a bridge catwalk in a deep-cutting gorge from field measurements. J. Wind Eng. Ind. Aerodyn. 186, 94–104 (2019).

    Article 

    Google Scholar
     

  • Li, Y., Xu, X., Zhang, M. & Xu, Y. Wind tunnel test and numerical simulation of wind characteristics at a bridge site in mountainous terrain. Adv. Struct. Eng. 20, 1223–1231 (2017).

    Article 

    Google Scholar
     

  • Zhang, M. et al. Wind characteristics in the high-altitude difference at bridge site by wind tunnel tests. 13 (2020).

  • Bardal, L. M. & Sætran, L. R. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines. J. Phys. Conf. Ser. 753, 032033 (2016).

    Article 

    Google Scholar
     

  • Choi, E. C. C. & Hidayat, F. A. Gust factors for thunderstorm and non-thunderstorm winds. J. Wind Eng. Ind. Aerodyn. 90, 1683–1696 (2002).

    Article 

    Google Scholar
     

  • Ministry of Communications of the People’s Republic of China. Wind-resistant Design Specification for Highway Bridges. (China Communications Press Co., Ltd., 2018).

  • Simiu, E. & Scanlan, R. H. Wind Effects on Structures: Fundamentals and Applications to Design (Wiley, 1996).


    Google Scholar
     

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R. Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 563–589 (1972).

    ADS 
    Article 

    Google Scholar
     

  • Panofsky, H. A. & McCormick, R. A. The spectrum of vertical velocity near the surface. Q. J Royal Met. Soc. 86, 495–503 (1960).

    ADS 
    Article 

    Google Scholar
     

  • Von Kármán, T. Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. USA. 34, 530–539 (1948).

    ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Bastos, F., Caetano, E., Cunha, Á., Cespedes, X. & Flamand, O. Characterisation of the wind properties in the Grande Ravine viaduct. J. Wind Eng. Ind. Aerodyn. 173, 112–131 (2018).

    Article 

    Google Scholar
     

  • Zhang, J., Zhang, M., Li, Y. & Fang, C. Comparison of wind characteristics at different heights of deep-cut canyon based on field measurement. Adv. Struct. Eng. 23, 219–233 (2020).

    Article 

    Google Scholar
     

  • Jing, H., Liao, H., Ma, C., Tao, Q. & Jiang, J. Field measurement study of wind characteristics at different measuring positions in a mountainous valley. Exp. Thermal Fluid Sci. 112, 109991 (2020).

    Article 

    Google Scholar
     

  • Solari, G. & Piccardo, G. Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probab. Eng. Mech. 16, 73–86 (2001).

    Article 

    Google Scholar
     

  • Apt, J. The spectrum of power from wind turbines. J. Power Sources 169, 369–374 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cook, N. J. Designer’s Guide to Wind Loading of Building Structures Part 1: Background, Damage Survey, Wind Data & Structural Classification (Butterworth-Heinemann, 1986).


    Google Scholar
     

  • Davenport, A. G. Rationale for determining design wind velocities. J. Struct. Div. 86, 39–68 (1960).

    Article 

    Google Scholar
     

  • Stull, R. B. An Introduction to Boundary Layer Meteorology (Springer, 1988).

    MATH 
    Book 

    Google Scholar
     

  • Anderson, P. S., Ladkin, R. S. & Renfrew, I. A. An autonomous doppler sodar wind profiling system. J. Atmos. Oceanic Technol. 22, 1309–1325 (2005).

    ADS 
    Article 

    Google Scholar
     

  • Zhu, L. D., Li, L., Xu, Y. L. & Zhu, Q. Wind tunnel investigations of aerodynamic coefficients of road vehicles on bridge deck. J. Fluids Struct. 30, 35–50 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Su, Y., Li, Y., Peng, D., Chen, K. & Meng, X. A full-scale wind tunnel test on characteristics of flow fields for the highway barrier and its wind loads. Eng. Mech. 34, 87–94 (2017).


    Google Scholar
     

  • Zhang, N., Ge, G., Xia, H. & Li, X. Dynamic analysis of coupled wind-train-bridge system considering tower shielding and triangular wind barriers. Wind Struct 21, 311–329 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, J., Zhang, M., Li, Y., Qian, Y. & Huang, B. Local wind characteristics on bridge deck of twin-box girder considering wind barriers by large-scale wind tunnel tests. Nat. Hazards 103, 751–766 (2020).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.