• Jerison, J. H. Evolution of the brain and intelligence. (New York: Academic Press, 1973).

  • MacLean, E. L., Barrickman, N. L., Johnson, E. M. & Wall, C. E. Sociality, ecology, and relative brain size in lemurs. J. Hum. Evol. 56, 471–478 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Melchionna, M. et al. Macroevolutionary trends of brain mass in Primates. Biol. J. Linn. Soc. 129, 14–25 (2020).


    Google Scholar
     

  • Sansalone, G. et al. Variation in the strength of allometry drives rates of evolution in primate brain shape. Proc. R. Soc. B Biol. Sci. 287, 20200807 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Montgomery, S. H. et al. The evolutionary history of cetacean brain and body size. Evolution (N. Y) 67, 3339–3353 (2013).


    Google Scholar
     

  • Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).

    Article 

    Google Scholar
     

  • Mccurry, M. R. et al. Brain size evolution in whales and dolphins: new data from fossil mysticetes. Biol. J. Linn. Soc. 133, 990–998 (2021).

    Article 

    Google Scholar
     

  • Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036.e3 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Makovicky, P. J. & Reddy, S. Evolution: Brainier birds. Curr. Biol. 30, R778–R780 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eliason, C., McCullough, J. M., Andersen, M. J. & Hackett, S. J. Accelerated brain shape evolution is associated with rapid diversification in an avian radiation. Am. Nat. 197, 576–591 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc. Natl Acad. Sci. 113, 2532–2537 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Henke-von der Malsburg, J., Kappeler, P. M. & Fichtel, C. Linking ecology and cognition: does ecological specialisation predict cognitive test performance? Behav. Ecol. Sociobiol. 74, 1–26 (2020).

    Article 

    Google Scholar
     

  • Alba, D. M. Cognitive inferences in fossil apes (Primates, Hominoidea): Does encephalization reflect intelligence? J. Anthropological Sci. 88, 11–48 (2010).


    Google Scholar
     

  • Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, 77 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gittleman, J. L. Female brain size and parental care in carnivores. Proc. Natl Acad. Sci. USA. 91, 5495–5497 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Garamszegi, L. Z., Møller, A. P. & Erritzøe, J. Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc. R. Soc. B Biol. Sci. 269, 961–967 (2002).

    Article 

    Google Scholar
     

  • Vincze, O. Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds. Evolution 70, 2123–2133 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Schuck-Paim, C., Alonso, W. J. & Ottoni, E. B. Cognition in an ever-changing world: Climatic variability is associated with brain size in neotropical parrots. Brain. Behav. Evol. 71, 200–215 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Amiel, J. J., Tingley, R. & Shine, R. Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles. PLoS One 6, e18277 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Safi, K. & Dechmann, D. K. N. Adaptation of brain regions to habitat complexity: A comparative analysis in bats (Chiroptera). Proc. R. Soc. B Biol. Sci. 272, 179–186 (2005).

    Article 

    Google Scholar
     

  • De Meester, G., Huyghe, K. & Van Damme, R. Brain size, ecology and sociality: A reptilian perspective. Biol. J. Linn. Soc. 126, 381–391 (2019).

    Article 

    Google Scholar
     

  • Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain. Behav. Evol. 63, 233–246 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Pamela Delarue, E. M. & Kerr, S. E. & Lee Rymer, T. Habitat complexity, environmental change and personality: A tropical perspective. Behav. Process. 120, 101–110 (2015).

    Article 

    Google Scholar
     

  • van Woerden, J. T., Willems, E. P., van Schaik, C. P. & Isler, K. Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution (N. Y) 66, 191–199 (2012).


    Google Scholar
     

  • Van Woerden, J. T., Van Schaik, C. P. & Isler, K. Seasonality of diet composition is related to brain size in New World Monkeys. Am. J. Phys. Anthropol. 154, 628–632 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Holekamp, K. E. & Benson-Amram, S. The evolution of intelligence in mammalian carnivores. Interface Focus 7, 20160108 (2017).

  • Weisbecker, V., Blomberg, S., Goldizen, A. W., Brown, M. & Fisher, D. The evolution of relative brain size in marsupials is energetically constrained but not driven by behavioral complexity. Brain. Behav. Evol. 85, 125–135 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Pollen, A. A. et al. Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain. Behav. Evol. 70, 21–39 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Taylor, G. M., Nol, E. & Boire, D. Brain regions and encephalization in anurans: adaptation or stability? Brain. Behav. Evol. 45, 96–109 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).

  • Dunbar, R. I. M. The social brain hypothesis. Evol. Anthropol. 6, 178–190 (1998).

    Article 

    Google Scholar
     

  • Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B: Biol. Sci. 274, 453–464 (2007).

    Article 

    Google Scholar
     

  • Bergman, T. J. & Beehner, J. C. Measuring social complexity. Anim. Behav. 103, 203–209 (2015).

    Article 

    Google Scholar
     

  • Sandel, A. A. et al. Assessing sources of error in comparative analyses of primate behavior: Intraspecific variation in group size and the social brain hypothesis. J. Hum. Evol. 94, 126–133 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kappeler, P. M. A framework for studying social complexity. Behav. Ecol. Sociobiol. 73, 1–14 (2019).

    Article 

    Google Scholar
     

  • Pérez-Barbería, F. J., Shultz, S. & Dunbar, R. I. M. Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution (N. Y) 61, 2811–2821 (2007).


    Google Scholar
     

  • Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21582–21586 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Borrego, N. & Gaines, M. Social carnivores outperform asocial carnivores on an innovative problem. Anim. Behav. 114, 21–26 (2016).

  • Mink, J. W., Blumenschine, R. J. & Adams, D. B. Ratio of central nervous system to body metabolism in vertebrates: Its constancy and functional basis. Am. J. Physiol. – Regul. Integr. Comp. Physiol. 10, 203–212 (1981).

    Article 

    Google Scholar
     

  • Raichle, M. E. & Gusnard, D. A. Appraising the brain’s energy budget. Proc. Natl Acad. Sci. USA 99, 10237–10239 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taylor, A. B. & van Schaik, C. P. Variation in brain size and ecology in Pongo. J. Hum. Evol. 52, 59–71 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Van Woerden, J. T., Van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: Evidence from strepsirrhine primates. Am. Nat. 176, 758–767 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Luo, Y. et al. Seasonality and brain size are negatively associated in frogs: Evidence for the expensive brain framework. Sci. Rep. 7, 1–9 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Isler, K. & van Schaik, C. P. The Expensive Brain: A framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Swanson, E. M., Holekamp, K. E., Lundrigan, B. L., Arsznov, B. M. & Sakai, S. T. Multiple determinants of whole and regional brain volume among terrestrial carnivorans. PLoS One 7, e38447 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wartel, A., Lindenfors, P. & Lind, J. Whatever you want: Inconsistent results are the rule, not the exception, in the study of primate brain evolution. PLoS One 14, e0218655 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bekoff, M., Daniels, T. J. & Gittleman, J. L. Life history patterns and the comparative social ecology of carnivores. Annu. Rev. Ecol. Syst. Vol. 15 15, 191–232 (1984).

    Article 

    Google Scholar
     

  • Dechmann, D. K. N. & Safi, K. Comparative studies of brain evolution: A critical insight from the Chiroptera. Biol. Rev. 84, 161–172 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Smaers, J. B., Dechmann, D. K. N., Goswami, A., Soligo, C. & Safi, K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc. Natl Acad. Sci. USA. 109, 18006–18011 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, eabe2101 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Radinsky, L. B. Outlines of canid and felid brain evolution. Ann. N. Y. Acad. Sci. 167, 277–288 (1969).

    Article 

    Google Scholar
     

  • Radinsky, L. Brains of early carnivores. Paleobiology 4, 333–349 (1977).

    Article 

    Google Scholar
     

  • Gittleman, J. L. Carnivore Brain Size, Behavioral Ecology, and Phylogeny. J. Mammal. 67, 23–36 (1986).

    Article 

    Google Scholar
     

  • Van Valkenburgh, B. Major patterns in the history of carnivorous mammals. Annu. Rev. Earth Planet. Sci. 27, 463–93 (1999).

    Article 

    Google Scholar
     

  • Nowak, R. M. Walker’s Carnivores of the World. (Johns Hopkins University Press, 2005).

  • Wilson, D. E. & Mittermeier, R. A. Handbook of The Mammals of the World- Volume 1. Lynx Edicions vol. 1 (2009).

  • Finarelli, J. A. Estimation of endocranial volume through the use of external skull measures in the Carnivora (Mammalia). J. Mammal. 87, 1027–1036 (2006).

    Article 

    Google Scholar
     

  • Quinn, G. P. & Keough, M. J. Experimental design and data analysis for biologists. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002). https://doi.org/10.1017/cbo9780511806384.

  • Boddy, A. M. et al. Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J. Evol. Biol. 25, 981–994 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kruska, D. C. T. On the evolutionary significance of encephalization in some eutherian mammals: Effects of adaptive radiation, domestication, and feralization. Brain, Behav. Evolution 65, 73–108 (2005).

    Article 

    Google Scholar
     

  • Finarelli, J. A. & Flynn, J. J. Brain-size evolution and sociality in Carnivora. Proc. Natl Acad. Sci. 106, 9345–9349 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fabre, A. C. et al. Getting a grip on the evolution of grasping in musteloid carnivorans: A three-dimensional analysis of forelimb shape. J. Evol. Biol. 26, 1521–1535 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Fabre, A. C., Cornette, R., Goswami, A. & Peigné, S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J. Anat. 226, 596–610 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dumont, M. et al. Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biol. J. Linn. Soc. 117, 858–878 (2016).

    Article 

    Google Scholar
     

  • Michaud, M., Veron, G., Peigné, S., Blin, A. & Fabre, A. C. Are phenotypic disparity and rate of morphological evolution correlated with ecological diversity in Carnivora? Biol. J. Linn. Soc. 124, 294–307 (2018).

    Article 

    Google Scholar
     

  • Koepfli, K.-P. et al. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol. 6, 1–22 (2008).

    Article 

    Google Scholar
     

  • Law, C. J., Slater, G. J. & Mehta, R. S. Lineage diversity and size disparity in Musteloidea: Testing patterns of adaptive radiation using molecular and fossil-based methods. Syst. Biol. 67, 127–144 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Law, C. J. Evolutionary shifts in extant mustelid (Mustelidae: Carnivora) cranial shape, body size and body shape coincide with the Mid-Miocene Climate Transition. Biol. Lett. 15, 20190155 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Law, C. Ecological drivers of carnivoran body shape evolution. Am. Nat. 198, 715588 (2021).

  • Van Valen, L. Pattern and the balance of nature. Evol. Theory 1, 31–49 (1973).


    Google Scholar
     

  • Lomolino, M. V. Body size evolution in insular vertebrates: Generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).

    Article 

    Google Scholar
     

  • Raia, P. & Meiri, S. The island rule in large mammals: Paleontology meets ecology. Evolution (N. Y) 60, 1731–1742 (2006).


    Google Scholar
     

  • Lyras, G. A., van der Geer, A. A. E. & Rook, L. Body size of insular carnivores: Evidence from the fossil record. J. Biogeogr. 37, 1007–1021 (2010).

    Article 

    Google Scholar
     

  • Garcia-Porta, J., Šmíd, J., Sol, D., Fasola, M. & Carranza, S. Testing the island effect on phenotypic diversification: insights from the Hemidactylus geckos of the Socotra Archipelago. Sci. Rep. 6, 1–12 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 13971 (2018).

  • Yoder, A. D. et al. Single origin of Malagasy Carnivora from an African ancestor. Nature 421, 734–737 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain. Behav. Evol. 63, 125–140 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Castiglione, S. et al. The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol. J. Linn. Soc. 132, 221–231 (2020).

    Article 

    Google Scholar
     

  • Gilissen, E. Évolution du cerveau, miniaturisation et stratégies écologiques chez les primates. Anthropol. Praehist. 116, 1–25 (2005).


    Google Scholar
     

  • Walker, R., Burger, O., Wagner, J. & Von Rueden, C. R. Evolution of brain size and juvenile periods in primates. J. Hum. Evol. 51, 480–489 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Sakai, S. T., Arsznov, B. M., Hristova, A. E., Yoon, E. J. & Lundrigan, B. L. Big cat coalitions: A comparative analysis of regional brain volumes in Felidae. Front. Neuroanat. 10, 99 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B Biol. Sci. 284, 20171765 (2017).

  • Chambers, H. R., Heldstab, S. A. & O’Hara, S. J. Why big brains? A comparison of models for both primate and carnivore brain size evolution. PLoS One 16, e0261185 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shultz, S. & Dunbar, R. I. M. Chimpanzee and felid diet composition is influenced by prey brain size. Biol. Lett. 2, 505–508 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Janmaat, K. R. L., Byrne, R. W. & Zuberbühler, K. Evidence for a spatial memory of fruiting states of rainforest trees in wild mangabeys. Anim. Behav. 72, 797–807 (2006).

    Article 

    Google Scholar
     

  • Noser, R. & Byrne, R. W. Travel routes and planning of visits to out-of-sight resources in wild chacma baboons, Papio ursinus. Anim. Behav. 73, 257–266 (2007).

    Article 

    Google Scholar
     

  • Trapanese, C., Meunier, H. & Masi, S. What, where and when: Spatial foraging decisions in primates. Biol. Rev. 94, 483–502 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maklakova, A. A., Immler, S., Gonzalez-Voyer, A., Rönn, J. & Kolm, N. Brains and the city: Big-brained passerine birds succeed in urban environments. Biol. Lett. 7, 730–732 (2011).

    Article 

    Google Scholar
     

  • Allman, J., McLaughlin, T. & Hakeem, A. Brain weight and life-span in primate species. Proc. Natl Acad. Sci. USA 90, 118–122 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deaner, R. O., Barton, R. A. & van Schaik, C. P. Primate brains and life histories: Renewing the connection. in Primate Life Histories and Socioecology (eds. Kappeler, P. M. & Pereira, M. E.) 233–265 (University of Chicago Press, 2003).

  • Sol, D. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130–133 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Reader, S. M. & MacDonald, K. Environmental variability and primate behavioural flexibility. in Animal Innovation (eds. Reader, S. M. & Laland, K. N.) 83–116 (Oxford University Press, 2012). https://doi.org/10.1093/acprof:oso/9780198526223.003.0004.

  • Fristoe, T. S. & Botero, C. A. Alternative ecological strategies lead to avian brain size bimodality in variable habitats. Nat. Commun. 10, 1–9 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Martin, R. D. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293, 57–60 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aiello, L. C. & Wheeler, P. The Expensive-Tissue Hypothesis: The brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).

    Article 

    Google Scholar
     

  • Huang, S., Tucker, M. A., Hertel, A. G., Eyres, A. & Albrecht, J. Scale‐dependent effects of niche specialisation: The disconnect between individual and species ranges. Ecol. Lett. 24, 1408–1419 (2021).

  • Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution 70, 1364–1375 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Lynch, L. M. & Allen, K. L. Relative brain volume of carnivorans has evolved in correlation with environmental and dietary variables differentially among clades. Brain. Behav. Evol. (2022) https://doi.org/10.1159/000523787.

  • De Winter, W. & Oxnard, C. E. Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409, 710–714 (2001).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pillay, P. & Manger, P. R. Order-specific quantitative patterns of cortical gyrification. Eur. J. Neurosci. 25, 2705–2712 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Finarelli, J. A. Does encephalization correlate with life history or metabolic rate in carnivora? Biol. Lett. 6, 350–353 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Sakai, S. T., Arsznov, B. M., Lundrigan, B. L. & Holekamp, K. E. Brain size and social complexity: A computed tomography study in hyaenidae. Brain. Behav. Evol. 77, 91–104 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Finarelli, J. A. & Flynn, J. J. The evolution of encephalization in caniform carnivorans. Evolution (N. Y) 61, 1758–1772 (2007).


    Google Scholar
     

  • Veitschegger, K. The effect of body size evolution and ecology on encephalization in cave bears and extant relatives. BMC Evol. Biol. 17, 124 (2017).

  • Snell-Rood, E. C. & Wick, N. Anthropogenic environments exert variable selection on cranial capacity in mammals. Proc. R. Soc. B Biol. Sci. 280, 20131384 (2013).

    Article 

    Google Scholar
     

  • Damasceno, E. M., Hingst-Zaher, E. & Astúa, D. Bite force and encephalization in the Canidae (Mammalia: Carnivora). J. Zool. 290, 246–254 (2013).

    Article 

    Google Scholar
     

  • Ballard, J. W. O. & Wilson, L. A. B. The Australian dingo: Untamed or feral? Front. Zool. 16, 1–19 (2019).

    Article 

    Google Scholar
     

  • Logan, C. J. & Clutton-Brock, T. H. Validating methods for estimating endocranial volume in individual red deer (Cervus elaphus). Behav. Process. 92, 143–146 (2013).

    Article 

    Google Scholar
     

  • Logan, C. J. & Palmstrom, C. R. Can endocranial volume be estimated accurately fromexternal skull measurements in great-tailed grackles (Quiscalus mexicanus)? PeerJ 2015, e1000 (2015).

    Article 

    Google Scholar
     

  • Symonds, M. R. E. & Blomberg, S. P. A primer on phylogenetic generalised least squares. in Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L.) 105–130 (Springer, Berlin, Heidelberg, 2014). https://doi.org/10.1007/978-3-662-43550-2_5.

  • Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Article 

    Google Scholar
     

  • Nel, J. A. J. Behavioural ecology of canids in the south-western Kalahari. Koedoe 27, 229–235 (1984).


    Google Scholar
     

  • Wozencraft, W. C. Alive and well in Tsimanampetsotsa. Nat. Hist. 12, 28–30 (1990).


    Google Scholar
     

  • Crooks, K. R. & Van Vuren, D. Resource utilization by two insular endemic mammalian carnivores, the island fox and island spotted skunk. Oecologia 104, 301–307 (1995).

    PubMed 
    Article 

    Google Scholar
     

  • Macdonald, D. W. & Courtenay, O. Enduring social relationships in a population of crab-eating zorros, Cerdocyon thous, in Amazonian Brazil (Carnivora, Canidae). J. Zool. 239, 329–355 (1996).

    Article 

    Google Scholar
     

  • Bunaian, F., Mashaqbeh, S., Yousef, M., Buduri, A. & Amr, Z. S. A new record of the sand cat, Felis margarita, from jordan. Zool. Middle East 16, 5–7 (1998).

    Article 

    Google Scholar
     

  • Kays, R. W. The behavior and ecology of olingos (Bassaricyon gabbii) and their competition with kinkajous (Potos flavus) in central Panama. Mammalia 64, 1–10 (2000).

    Article 

    Google Scholar
     

  • Gorsuch, W. A. & Larivière, S. Vormela peregusna. Mamm. Species 779, 1–5 (2005).

    Article 

    Google Scholar
     

  • Azlan, J. M. & Sharma, D. S. K. The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia. ORYX 40, 36–41 (2006).

    Article 

    Google Scholar
     

  • Ogurlu, I., Gundogdu, E. & Yildirim, I. C. Population status of jungle cat (Felis chaus) in Egirdir lake, Turkey. J. Environ. Biol. 31, 179–183 (2010).

    PubMed 

    Google Scholar
     

  • Castillo, D. F., Lucherini, M., Vidal, E. M. L., Manfredi, C. & Casanave, E. B. Spatial organization of molina’s hog-nosed skunk (Conepatus chinga) in two landscapes of the Pampas grassland of Argentina. Can. J. Zool. 89, 229–238 (2011).

    Article 

    Google Scholar
     

  • Jenner, N., Groombridge, J. & Funk, S. M. Commuting, territoriality and variation in group and territory size in a black-backed jackal population reliant on a clumped, abundant food resource in Namibia. J. Zool. 284, 231–238 (2011).

    Article 

    Google Scholar
     

  • Cheida, C. C., Rodrigues, F. H. G. & Mourão, G. M. Ecologia espaço-temporal de guaxinins Procyon cancrivorus (Carnivora, Procyonidae) no Pantanal central. 2010–2013 (2012).

  • González-Christen, A., Delfín-Alfonso, C. A. & Sosa-Martínez, A. Distribución y abundancia de la nutria neotropical (Lontra longicaudis annectens Major, 1897), en el Lago de Catemaco Veracruz, México. Therya 4, 201–217 (2013).

    Article 

    Google Scholar
     

  • Brashear, W. A., Ferguson, A. W., Negovetich, N. J. & Dowler, R. C. Spatial organization and home range patterns of the american hog-nosed skunk (Conepatus leuconotus). Am. Midl. Nat. 174, 310–320 (2015).

    Article 

    Google Scholar
     

  • Duckworth, J. W. et al. Predicted distribution of small-toothed palm civet Arctogalidia trivirgata (Mammalia: Carnivora: Viverridae) on Borneo. Raffles Bull. Zool. 33, 103–110 (2016).


    Google Scholar
     

  • Sunquist, M. & Sunquist, F. Wild Cats of the World. Wild cats of the world (University of Chicago Press, 2019). https://doi.org/10.7208/chicago/9780226518237.001.0001.

  • van Schaik, C. P., Isler, K. & Burkart, J. M. Explaining brain size variation: From social to cultural brain. Trends Cogn. Sci. 16, 277–284 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Article 

    Google Scholar
     

  • Slater, G. J. & Friscia, A. R. Hierarchy in adaptive radiation: A case study using the Carnivora (Mammalia). Evolution (N. Y) 73, 524–539 (2019).


    Google Scholar
     

  • Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article 

    Google Scholar
     

  • Sol, D., Stirling, D. G. & Lefebvre, L. Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution (N. Y) 59, 2669–2677 (2005).


    Google Scholar
     

  • Sayol, F., Lapiedra, O., Ducatez, S. & Sol, D. Larger brains spur species diversification in birds. Evolution (N. Y) 73, 2085–2093 (2019).


    Google Scholar
     

  • Creighton, M. J. A., Greenberg, D. A., Reader, S. M. & Mooers, A. The role of behavioural flexibility in primate diversification. Anim. Behav. 180, 269–290 (2021).

    Article 

    Google Scholar
     

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published.