• Lai, M. C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014).

    Article 

    Google Scholar
     

  • Orinstein, A. J. et al. Intervention for optimal outcome in children and adolescents with a history of autism. J. Dev. Behav. Pediatr. 35, 247–256 (2014).

    Article 

    Google Scholar
     

  • Fombonne, E. Editorial: The rising prevalence of autism. J. Child. Psychol. Psychiatry 59, 717–720 (2018).

    Article 

    Google Scholar
     

  • Starko, K. M., Ray, C. G., Dominguez, L. B., Stromberg, W. L. & Woodall, D. F. Reye’s syndrome and salicylate use. Pediatrics 66, 859–864 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Wakefield, A. J. et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351, 637–641 (1998); retraction 375, 445 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Geier, D. A. & Geier, M. R. A comparative evaluation of the effects of MMR immunization and mercury doses from thimerosal-containing childhood vaccines on the population prevalence of autism. Med. Sci. Monit. 10, PI33–PI39 (2004).

    CAS 

    Google Scholar
     

  • Hornig, M. et al. Lack of association between measles virus vaccine and autism with enteropathy: a case-control study. PLoS ONE 3, e3140 (2008).

    Article 

    Google Scholar
     

  • Gerber, J. S. & Offit, P. A. Vaccines and autism: a tale of shifting hypotheses. Clin. Infect. Dis. 48, 456–461 (2009).

    Article 

    Google Scholar
     

  • Velasquez-Manoff, M. The anti-vaccine movement’s new frontier. New York Times https://www.nytimes.com/2022/05/25/magazine/anti-vaccine-movement.html (2022).

  • Hansen, S. N., Schendel, D. E. & Parner, E. T. Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr. 169, 56–62 (2015).

    Article 

    Google Scholar
     

  • Kanner, L. Problems of nosology and psychodynamics of early infantile autism. Am. J. Orthopsychiatry 19, 416–426 (1949).

    Article 
    CAS 

    Google Scholar
     

  • Chess, S. Autism in children with congenital rubella. J. Autism Child. Schizophr. 1, 33–47 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Folstein, S. & Rutter, M. Infantile autism: a genetic study of 21 twin pairs. J. Child. Psychol. Psychiatry 18, 297–321 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Tick, B., Bolton, P., Happe, F., Rutter, M. & Rijsdijk, F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child. Psychol. Psychiatry 57, 585–595 (2016).

    Article 

    Google Scholar
     

  • Folstein, S. & Rutter, M. Genetic influences and infantile autism. Nature 265, 726–728 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Suren, P. et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309, 570–577 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X. et al. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet. 54, 1305–1319 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stromland, K., Nordin, V., Miller, M., Akerstrom, B. & Gillberg, C. Autism in thalidomide embryopathy: a population study. Dev. Med. Child. Neurol. 36, 351–356 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Che, X. et al. Maternal mid-gestational and child cord blood immune signatures are strongly associated with offspring risk of ASD. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01415-4 (2022).

    Article 

    Google Scholar
     

  • Hours, C., Recasens, C. & Baleyte, J. M. ASD and ADHD comorbidity: what are we talking about? Front. Psychiatry 13, 837424 (2022).

    Article 

    Google Scholar
     

  • Kennedy, M. et al. Early severe institutional deprivation is associated with a persistent variant of adult attention-deficit/hyperactivity disorder: clinical presentation, developmental continuities and life circumstances in the English and Romanian Adoptees study. J. Child. Psychol. Psychiatry 57, 1113–1125 (2016).

    Article 

    Google Scholar
     

  • Kumsta, R. et al. Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Transl. Psychiatry 6, e830 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Moore, S. J. et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J. Med. Genet. 37, 489–497 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Chess, S. Follow-up report on autism in congenital rubella. J. Autism Child. Schizophr. 7, 69–81 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Hertz-Picciotto, I. et al. A prospective study of environmental exposures and early biomarkers in autism spectrum disorder: design, protocols, and preliminary data from the MARBLES study. Env. Health Perspect. 126, 117004 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schendel, D. E. et al. The International Collaboration for Autism Registry Epidemiology (iCARE): multinational registry-based investigations of autism risk factors and trends. J. Autism Dev. Disord. 43, 2650–2663 (2013).

    Article 

    Google Scholar
     

  • Boyd, A. et al. Cohort profile: the ‘children of the 90s’ – the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

    Article 

    Google Scholar
     

  • Pinto-Martin, J. et al. The central New Jersey neonatal brain haemorrhage study: design of the study and reliability of ultrasound diagnosis. Paediatr. Perinat. Epidemiol. 6, 273–284 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Roth, C. et al. Folic acid supplements in pregnancy and severe language delay in children. JAMA 306, 1566–1573 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X., Zou, M., Sun, C., Wu, L. & Chen, W. X. Prenatal folic acid supplements and offspring’s autism spectrum disorder: a meta-analysis and meta-regression. J. Autism Dev. Disord. 52, 522–539 (2022).

    Article 

    Google Scholar
     

  • Schmidt, R. J. et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (Childhood Autism Risks from Genetics and Environment) case-control study. Am. J. Clin. Nutr. 96, 80–89 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Maruvada, P. et al. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am. J. Clin. Nutr. 112, 1390–1403 (2020).

    Article 

    Google Scholar
     

  • Naderi, N. & House, J. D. Recent developments in folate nutrition. Adv. Food Nutr. Res. 83, 195–213 (2018).

    Article 

    Google Scholar
     

  • Schmidt, R. J., Iosif, A. M., Guerrero Angel, E. & Ozonoff, S. Association of maternal prenatal vitamin use with risk for autism spectrum disorder recurrence in young siblings. JAMA Psychiatry 76, 391–398 (2019).

    Article 

    Google Scholar
     

  • Cheslack-Postava, K. et al. Increased risk of autism spectrum disorders at short and long interpregnancy intervals in Finland. J. Am. Acad. Child. Adolesc. Psychiatry 53, 1074–1081.e4 (2014).

    Article 

    Google Scholar
     

  • Gunnes, N. et al. Interpregnancy interval and risk of autistic disorder. Epidemiology 24, 906–912 (2013).

    Article 

    Google Scholar
     

  • Ly, L. et al. Impact of mothers’ early life exposure to low or high folate on progeny outcome and DNA methylation patterns. Environ. Epigenet. 6, dvaa018 (2020).

    Article 

    Google Scholar
     

  • Ly, L. et al. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Mol. Hum. Reprod. 23, 461–477 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Golding, J. et al. Ancestral smoking and developmental outcomes: a review of publications from a population birth cohort. Biol. Reprod. 105, 625–631 (2021).

    Article 

    Google Scholar
     

  • Golding, J., Steer, C. & Pembrey, M. Parental and grandparental ages in the autistic spectrum disorders: a birth cohort study. PLoS ONE 5, e9939 (2010).

    Article 

    Google Scholar
     

  • Golding, J. et al. Grand-maternal smoking in pregnancy and grandchild’s autistic traits and diagnosed autism. Sci. Rep. 7, 46179 (2017).

    Article 

    Google Scholar
     

  • Goines, P. E. et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol. Autism 2, 13 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jones, K. L. et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol. Psychiatry 22, 273–279 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Casey, S. et al. Maternal mid-gestation cytokine dysregulation in mothers of children with autism spectrum disorder. J. Autism Dev. Disord. https://doi.org/10.1007/s10803-021-05271-7 (2021).

    Article 

    Google Scholar
     

  • Krakowiak, P. et al. Neonatal cytokine profiles associated with autism spectrum disorder. Biol. Psychiatry 81, 442–451 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Abdallah, M. W. et al. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish historic birth cohort. Brain Behav. Immun. 26, 170–176 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Heuer, L. S. et al. An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: the early markers for autism study. Biol. Psychiatry 86, 255–264 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zerbo, O. et al. Neonatal cytokines and chemokines and risk of autism spectrum disorder: the early markers for autism (EMA) study: a case-control study. J. Neuroinflammation 11, 113 (2014).

    Article 

    Google Scholar
     

  • Abdallah, M. W. et al. Neonatal levels of cytokines and risk of autism spectrum disorders: an exploratory register-based historic birth cohort study utilizing the Danish newborn screening biobank. J. Neuroimmunol. 252, 75–82 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, P., Elsabbagh, M., Bolton, P. & Singh, I. In search of biomarkers for autism: scientific, social and ethical challenges. Nat. Rev. Neurosci. 12, 603–612 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hultman, C. M., Sparen, P. & Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology 13, 417–423 (2002).

    Article 

    Google Scholar
     

  • Eaton, W. W., Mortensen, P. B., Thomsen, P. H. & Frydenberg, M. Obstetric complications and risk for severe psychopathology in childhood. J. Autism Dev. Disord. 31, 279–285 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Schendel, D. & Bhasin, T. K. Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics 121, 1155–1164 (2008).

    Article 

    Google Scholar
     

  • Movsas, T. Z. et al. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J. Pediatr. 163, 73–78 (2013).

    Article 

    Google Scholar
     

  • Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 542, 348–351 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jaddoe, V. W. et al. The Generation R study: design and cohort profile. Eur. J. Epidemiol. 21, 475–484 (2006).

    Article 

    Google Scholar
     

  • Kazdoba, T. M. et al. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr. Top. Behav. Neurosci. 28, 1–52 (2016).

    CAS 

    Google Scholar
     

  • Ergaz, Z., Weinstein-Fudim, L. & Ornoy, A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod. Toxicol. 64, 116–140 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Christensen, J. et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309, 1696–1703 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tsugiyama, L. E., Ida-Eto, M., Ohkawara, T., Noro, Y. & Narita, M. Altered neuronal activity in the auditory brainstem following sound stimulation in thalidomide-induced autism model rats. Congenit. Anom. 60, 82–86 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Matsuzaki, J. et al. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity. Neuroreport 23, 113–118 (2012).

    Article 

    Google Scholar
     

  • Uccelli, N. A. et al. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J. Neurochem. 159, 128–144 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Frith, C. Is autism a disconnection disorder? Lancet Neurol. 3, 577 (2004).

    Article 

    Google Scholar
     

  • Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci. 23, 297–302 (2003).

    Article 

    Google Scholar
     

  • Bauman, M. D. et al. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiatry 75, 332–341 (2014).

    Article 
    CAS 

    Google Scholar
     

  • De Miranda, J. et al. Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio 1, e00176-10 (2010).

    Article 

    Google Scholar
     

  • Bauman, M. D. et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl. Psychiatry 3, e278 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hsiao, E. Y. & Patterson, P. H. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 25, 604–615 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Glass, R., Norton, S., Fox, N. & Kusnecov, A. W. Maternal immune activation with staphylococcal enterotoxin A produces unique behavioral changes in C57BL/6 mouse offspring. Brain Behav. Immun. 75, 12–25 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article 

    Google Scholar
     

  • Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stoltenberg, C. et al. The Autism Birth Cohort: a paradigm for gene-environment-timing research. Mol. Psychiatry 15, 676–680 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kanner, L. Autistic disturbances of affective contact. Nerv. Child. 2, 217 (1943).


    Google Scholar
     

  • Asperger, H. Die “Autistischen Psychopathen” im Kindesalter. Arch. Psychiatr. Nervenkr. 117, 76–136 (1944).

    Article 

    Google Scholar
     

  • Wing, L. Asperger’s syndrome: a clinical account. Psychol. Med. 11, 115–129 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Stein, Z., Susser, M., Saenger, G. & Marolla, F. Famine and Human Development: The Dutch Hunger Winter of 1944–1945 (Oxford Univ. Press, 1975).

  • Wing, L. & Gould, J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J. Autism Dev. Disord. 9, 11–29 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Schopler, E., Rutter, M. & Chess, S. Editorial: Change of journal scope and title. J. Autism Dev. Disord. 9, 1–10 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Meryash, D. L., Szymanski, L. S. & Gerald, P. S. Infantile autism associated with the fragile-X syndrome. J. Autism Dev. Disord. 12, 295–301 (1982).

    Article 
    CAS 

    Google Scholar
     

  • MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338, 131–137 (1991).

    Article 

    Google Scholar
     

  • Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S. & Romano, J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 370, 247–261 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Rutter, M. et al. Quasi-autistic patterns following severe early global privation. English and Romanian Adoptees (ERA) Study Team. J. Child. Psychol. Psychiatry 40, 537–549 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Courchesne, E., Carper, R. & Akshoomoff, N. Evidence of brain overgrowth in the first year of life in autism. JAMA 290, 337–344 (2003).

    Article 

    Google Scholar
     

  • Reichenberg, A. et al. Advancing paternal age and autism. Arch. Gen. Psychiatry 63, 1026–1032 (2006).

    Article 

    Google Scholar
     

  • Sadik, A. et al. Parental inflammatory bowel disease and autism in children. Nat. Med. 28, 1406–1411 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *