• West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).

    Book 

    Google Scholar
     

  • Piersma, T. & Van Gils, J. A. The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behaviour (Oxford University Press, 2011).


    Google Scholar
     

  • Piersma, T. & Drent, J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18, 228–233 (2003).

    Article 

    Google Scholar
     

  • Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 1–10 (2020).


    Google Scholar
     

  • Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Article 

    Google Scholar
     

  • Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).

    Article 
    CAS 

    Google Scholar
     

  • Rensch, B. Das Prinzip geographischer Rassenkreise und das Problem der Artbildung (Gebrueder Borntraeger, 1929).


    Google Scholar
     

  • Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).

    Article 

    Google Scholar
     

  • Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).


    Google Scholar
     

  • Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160345 (2017).

    Article 

    Google Scholar
     

  • Friedman, N. R. & Remês, V. Ecogeographical gradients in plumage coloration among Australasian songbird clades. Glob. Ecol. Biogeogr. 26, 261–274 (2017).

    Article 

    Google Scholar
     

  • Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).

    Article 

    Google Scholar
     

  • Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).

    Article 

    Google Scholar
     

  • Medina, I. et al. Reflection of near-infrared light confers thermal protection in birds. Nat. Commun 9, 3610 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Aldrich, J. W. & James, F. C. Ecogeographic variation in the American Robin (Turdus migratorius). Auk 108, 230–249 (1991).


    Google Scholar
     

  • Morales, H. E. et al. Neutral and selective drivers of colour evolution in a widespread Australian passerine. J. Biogeogr. 44, 522–536 (2017).

    Article 

    Google Scholar
     

  • Griffith, S. C., Owens, I. P. & Burke, T. Environmental determination of a sexually selected trait. Nature 400, 358–360 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fargallo, J. A., Laaksonen, T., Korpimäki, E. & Wakamatsu, K. A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evol. Ecol. 21, 157–171 (2007).

    Article 

    Google Scholar
     

  • Fargallo, J. A., Martínez, F., Wakamatsu, K., Serrano, D. & Blanco, G. Sex-dependent expression and fitness consequences of sunlight derived color phenotypes. Am. Nat. 191, 726–743 (2018).

    Article 

    Google Scholar
     

  • Beebe, W. Geographic variation in birds, with especial reference to the effects of humidity. Zoologica 1, 3–41 (1907).


    Google Scholar
     

  • Bieber, H. Fellverdunklung beim hauskaninchen nach kälteeinwirkung. Zeitschrift für Säugetierkunde 38, 33–38 (1972).


    Google Scholar
     

  • Johnston, R. F. & Selander, R. K. House sparrows: Rapid evolution of races in North America. Science 144, 548–550 (1964).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Galván, I., Wakamatsu, K. & Alonso-Álvarez, C. Black bib size is associated with feather content of pheomelanin in male house sparrows. Pigment Cell Melanoma Res. 27, 1159–1161 (2014).

    Article 

    Google Scholar
     

  • Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Article 

    Google Scholar
     

  • Montgomerie, R. Analyzing colors. In Bird Colouration I. Mechanisms and Measurements (eds Hill, E. G. & McGraw, K. J.) (Harvard University Press, 2006).


    Google Scholar
     

  • McGraw, K. J., Dale, J. & Mackillop, E. A. Social environment during molt and the expression of melanin-based plumage pigmentation in male house sparrows (Passer domesticus). Behav. Ecol. Sociobiol. 53, 116–122 (2003).

    Article 

    Google Scholar
     

  • Lessells, C. M. & Boag, P. T. Unrepeatable repeatabilities a common mistake. Auk 104, 116–121 (1987).

    Article 

    Google Scholar
     

  • Anderson, T. R. Biology of the Ubiquitous House Sparrow (Oxford University Press, 2006).

    Book 

    Google Scholar
     

  • Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2006).

    Book 

    Google Scholar
     

  • Nakagawa, S., Ockendon, N., Gillespie, D. O., Hatchwell, B. J. & Burke, T. Assessing the function of house sparrows’ bib size using a flexible meta-analysis method. Behav. Ecol. 18, 831–840 (2007).

    Article 

    Google Scholar
     

  • Hill, G. E. & McGraw, K. J. Bird Coloration, Volume I: Mechanisms and Measurements (Harvard University Press, 2006).

    Book 

    Google Scholar
     

  • D’Alba, L. & Shawkey, M. D. Melanosomes: Biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–19 (2018).

    Article 

    Google Scholar
     

  • Delhey, K., Burger, C., Fiedler, W. & Peters, A. Seasonal changes in colour: A comparison of structural, melanin- and carotenoid-based plumage colours. PLoS ONE 5, e11582 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Galván, I., Mousseau, T. A. & Møller, A. P. Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration. Oecologia 165, 827–835 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Meunier, J., Pinto, S. F., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: A meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).

    Article 

    Google Scholar
     

  • Roulin, A., Almasi, B., Meichtry-Stier, K. S. & Jenni, L. Eumelanin- and pheomelanin-based colour advertise resistance to oxidative stress in opposite ways. J. Evol. Biol. 24, 2241–2247 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gasparini, J. et al. Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J. Anim. Ecol. 78, 608–616 (2009).

    Article 

    Google Scholar
     

  • Fargallo, J. A. et al. Sex-specific phenotypic integration: Endocrine profiles, coloration, and behavior in fledgling boobies. Behav. Ecol. 25, 76–87 (2013).

    Article 

    Google Scholar
     

  • Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hubbard, J. K., Uy, J. A. C., Hauber, M. E., Hoekstra, H. E. & Safran, R. J. Vertebrate pigmentation: From underlying genes to adaptive function. Trends Genet. 26, 231–239 (2010).

    Article 
    CAS 

    Google Scholar
     

  • McKinnon, J. S. & Pierotti, M. E. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).

    Article 

    Google Scholar
     

  • Poston, J. P., Hasselquist, D., Stewart, I. R. & Westneat, D. F. Dietary amino acids influence plumage traits and immune responses of male house sparrows, Passer domesticus, but not as expected. Anim. Behav. 70, 1171–1181 (2005).

    Article 

    Google Scholar
     

  • McGraw, K. J. Dietary mineral content influences the expression of melanin-based ornamental coloration. Behav. Ecol. 18, 137–142 (2007).

    Article 

    Google Scholar
     

  • Fargallo, J. A., Martínez-Padilla, J., Toledano-Díaz, A., Santiago-Moreno, J. & Dávila, J. A. Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J. Anim. Ecol. 76, 201–209 (2007).

    Article 

    Google Scholar
     

  • Fitze, P. S. & Richner, H. Differential effects of a parasite on ornamental structures based on melanins and carotenoids. Behav. Ecol. 13, 401–407 (2002).

    Article 

    Google Scholar
     

  • Roulin, A., Altwegg, R., Jensen, H., Steinsland, I. & Schaub, M. Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecol. Lett. 13, 616–626 (2010).

    Article 

    Google Scholar
     

  • Sharma, A. Effect of ambient humidity on UV/visible photodegradation of melanin thin films. Photochem. Photobiol. 86, 852–855 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Burtt, E. H. The adaptiveness of animal colors. Bioscience 31, 723–729 (1981).

    Article 

    Google Scholar
     

  • Heppner, F. The metabolic significance of differential absorption of radiant energy by black and white birds. Condor 72, 50–59 (1970).

    Article 

    Google Scholar
     

  • Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: A macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).

    Article 

    Google Scholar
     

  • Zink, R. M. & Remsen, J. V. Evolutionary processes and patterns of geographic variation in birds. Curr. Ornithol. 4, 1–69 (1986).


    Google Scholar
     

  • Burtt, E. H. & Ichida, J. M. Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106, 681–686 (2004).

    Article 

    Google Scholar
     

  • Ruiz-De-Castaneda, R., Burtt, E. H. Jr., Gonzalez-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: A role for feather-degrading bacteria in sexual selection?. Biol. J. Linn. Soc. 105, 409–419 (2012).

    Article 

    Google Scholar
     

  • Goldstein, G. et al. Bacterial degradation of black and white feathers. Auk 121, 656–659 (2004).

    Article 

    Google Scholar
     

  • Ducrest, A. L., Keller, L. & Roulin, A. Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510 (2008).

    Article 

    Google Scholar
     

  • Kim, S. Y., Fargallo, J. A., Vergara, P. & Martínez-Padilla, J. Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity 111, 139–146 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Horrocks, N. P. C. et al. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 177, 281–290 (2015).

    Article 
    ADS 

    Google Scholar
     

  • McLean, N., Van Der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401 (2018).

    Article 

    Google Scholar
     

  • Gardner, J. L. et al. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Change Responses 3, 11 (2016).

    Article 

    Google Scholar
     

  • Gerson, A. R. et al. Flight at low ambient humidity increases protein catabolism in migratory birds. Science 333, 1434–1436 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *