• Kaelbling, L. P. et al. Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998).

    MATH 

    Google Scholar
     

  • Maia, T. V. Reinforcement learning, conditioning, and the brain: Successes and challenges. Cogn. Affect. Behav. Neurosci. 9(4), 343–364 (2009).


    Google Scholar
     

  • Braun, D. A. et al. Structure learning in action. Behav. Brain Res. 206(2), 157–165 (2010).


    Google Scholar
     

  • Gershman, S. J. et al. Context, learning, and extinction. Psychol. Rev. 117(1), 197–209 (2010).


    Google Scholar
     

  • Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Front. Hum. Neurosci. 5, 189 (2012).


    Google Scholar
     

  • Dayan, P. & Berridge, K. C. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. Cogn. Affect. Behav. Neurosci. 14(2), 473–492 (2014).


    Google Scholar
     

  • Wilson, R. C. et al. Orbitofrontal cortex as a cognitive map of task space. Neuron 81(2), 267–279 (2014).

    CAS 

    Google Scholar
     

  • Gershman, S. J. et al. Discovering latent causes in reinforcement learning. Curr. Opin. Behav. Sci. 5, 43–50 (2015).


    Google Scholar
     

  • Tervo, D. G. R. et al. Toward the neural implementation of structure learning. Curr. Opin. Neurobiol. 37, 99–105 (2016).

    CAS 

    Google Scholar
     

  • Niv, Y. Learning task-state representations. Nat. Neurosci. 22(10), 1544–1553 (2019).

    CAS 

    Google Scholar
     

  • Salzman, C. D. & Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202 (2010).

    CAS 

    Google Scholar
     

  • Zaidi, Q. Visual inferences of material changes: Color as clue and distraction. Wiley Interdiscip. Rev. Cogn. Sci. 2(6), 686–700 (2011).


    Google Scholar
     

  • Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015).

    CAS 

    Google Scholar
     

  • Sutton, R. S. & Barto, A. G. Reinforcement learning: an introduction. In Adaptive Computation and Machine Learning, Vol. xviii (MIT Press, 1998).

  • Dayan, P. & Daw, N. D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Neurosci. 8(4), 429–453 (2008).


    Google Scholar
     

  • Lee, D. et al. Neural basis of reinforcement learning and decision making. Annu. Rev. Neurosci. 35(1), 287–308 (2012).

    CAS 

    Google Scholar
     

  • Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55(4), 189 (1948).

    CAS 

    Google Scholar
     

  • Hemmi, J. M. & Menzel, C. R. Foraging strategies of long-tailed macaques, Macaca fascicularis: Directional extrapolation. Anim. Behav. 49(2), 457–464 (1995).


    Google Scholar
     

  • Wilson, R. C. et al. Humans use directed and random exploration to solve the explore—exploit dilemma. J. Exp. Psychol. Gen. 143(6), 2074 (2014).


    Google Scholar
     

  • Kolling, N. et al. Neural mechanisms of foraging. Science 336(6077), 95–98 (2012).

    CAS 

    Google Scholar
     

  • Kaplan, R. et al. The neural representation of prospective choice during spatial planning and decisions. PLoS Biol. 15(1), e1002588 (2017).


    Google Scholar
     

  • Kolling, N. et al. Prospection, perseverance, and insight in sequential behavior. Neuron 99(5), 1069-1082.e7 (2018).

    CAS 

    Google Scholar
     

  • Meder, B. et al. Stepwise versus globally optimal search in children and adults. Cognition 191, 103965 (2019).


    Google Scholar
     

  • Bromberg-Martin, E. S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63(1), 119–126 (2009).

    CAS 

    Google Scholar
     

  • Bromberg-Martin, E. S. & Hikosaka, O. Lateral habenula neurons signal errors in the prediction of reward information. Nat. Neurosci. 14(9), 1209–1216 (2011).

    CAS 

    Google Scholar
     

  • Blanchard, T. C. et al. Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron 85(3), 602–614 (2015).

    CAS 

    Google Scholar
     

  • Iigaya, K. et al. The modulation of savouring by prediction error and its effects on choice. Elife 5, e13747 (2016).


    Google Scholar
     

  • Wang, M. Z. & Hayden, B. Y. Monkeys are curious about counterfactual outcomes. Cognition 189, 1–10 (2019).


    Google Scholar
     

  • White, J. K. et al. A neural network for information seeking. Nat. Commun. 10(1), 1–19 (2019).


    Google Scholar
     

  • Foley, N. C. et al. Parietal neurons encode expected gains in instrumental information. Proc. Natl. Acad. Sci. 114(16), E3315–E3323 (2017).

    CAS 

    Google Scholar
     

  • Horan, M. et al. Parietal neurons encode information sampling based on decision uncertainty. Nat. Neurosci. 22(8), 1327–1335 (2019).

    CAS 

    Google Scholar
     

  • Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 1986).


    Google Scholar
     

  • Hills, T. T. et al. Optimal foraging in semantic memory. Psychol. Rev. 119(2), 431 (2012).


    Google Scholar
     

  • Metcalfe, J. & Jacobs, W. J. People’s study time allocation and its relation to animal foraging. Behav. Proc. 83(2), 213–221 (2010).


    Google Scholar
     

  • Pirolli, P. L. T. Information Foraging Theory: Adaptive Interaction with Information (Oxford University Press, 2009).


    Google Scholar
     

  • Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9(2), 129–136 (1976).

    CAS 
    MATH 

    Google Scholar
     

  • McNamara, J. Optimal patch use in a stochastic environment. Theor. Popul. Biol. 21(2), 269–288 (1982).

    MATH 

    Google Scholar
     

  • Davidson, J. D. & El Hady, A. Foraging as an evidence accumulation process. PLoS Comput. Biol. 15(7), e1007060 (2019).

    CAS 

    Google Scholar
     

  • Stephens, D. W. et al. Foraging: Behavior and Ecology (University of Chicago Press, 2007).


    Google Scholar
     

  • McNamara, J. M. & Houston, A. I. Optimal foraging and learning. J. Theor. Biol. 117(2), 231–249 (1985).


    Google Scholar
     

  • Fu, W.-T. & Pirolli, P. SNIF-ACT: A cognitive model of user navigation on the World Wide Web. Hum. Comput. Interact. 22(4), 355–412 (2007).

    CAS 

    Google Scholar
     

  • Osu, R. et al. Practice reduces task relevant variance modulation and forms nominal trajectory. Sci. Rep. 5(1), 1–17 (2015).


    Google Scholar
     

  • Gallistel, C. R. et al. The rat approximates an ideal detector of changes in rates of reward: Implications for the law of effect. J. Exp. Psychol. Anim. Behav. Process. 27(4), 354 (2001).

    CAS 

    Google Scholar
     

  • Inclan, C. & Tiao, G. C. Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Stat. Assoc. 89(427), 913–923 (1994).

    MATH 

    Google Scholar
     

  • Todd, P. M. & Hills, T. T. Foraging in mind. Curr. Dir. Psychol. Sci. 29(3), 309–315 (2020).


    Google Scholar
     

  • Pirolli, P. L. T. Information Foraging Theory: Adaptive Interaction with Information (Oxford University Press, 2007).


    Google Scholar
     

  • Giraldeau, L.-A. & Caraco, T. Social foraging theory. In Social Foraging Theory (Princeton University Press, 2000).

  • Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Prokasy, W. F.) (Appleton-Century-Crofts, 1972).


    Google Scholar
     

  • Sutton, R. S. et al. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211 (1999).

    MATH 

    Google Scholar
     

  • Momennejad, I. Learning structures: Predictive representations, replay, and generalization. Curr. Opin. Behav. Sci. 32, 155–166 (2020).


    Google Scholar
     

  • Littman, M. L. A tutorial on partially observable Markov decision processes. J. Math. Psychol. 53(3), 119–125 (2009).

    MATH 

    Google Scholar
     

  • Kaelbling, L. P. et al. Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996).


    Google Scholar
     

  • Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1963).

    MATH 

    Google Scholar
     

  • Crupi, V. et al. Generalized information theory meets human cognition: Introducing a unified framework to model uncertainty and information search. Cogn. Sci. 42(5), 1410–1456 (2018).


    Google Scholar
     

  • Miller, G. Informavores. In The Study of Information: Interdisciplinary Messages (eds Machlup, F. & Mansfield, U.) 111–113 (Wiley, 1983).


    Google Scholar
     

  • Coenen, A. et al. Asking the right questions about the psychology of human inquiry: Nine open challenges. Psychon. Bull. Rev. 26(5), 1548–1587 (2019).


    Google Scholar
     

  • Gureckis, T. & Markant, D. Active learning strategies in a spatial concept learning game. In Proceedings of the Annual Meeting of the Cognitive Science Society (2009).

  • Markant, D. & Gureckis, T. Does the utility of information influence sampling behavior? In Proceedings of the Annual Meeting of the Cognitive Science Society (2012).

  • Oaksford, M. & Chater, N. A rational analysis of the selection task as optimal data selection. Psychol. Rev. 101(4), 608 (1994).


    Google Scholar
     

  • Oaksford, M. & Chater, N. Rationality in an Uncertain World: Essays on the Cognitive Science of Human Reasoning (Psychology Press, 1998).


    Google Scholar
     

  • Nelson, J. D. Finding useful questions: On Bayesian diagnosticity, probability, impact, and information gain. Psychol. Rev. 112(4), 979 (2005).


    Google Scholar
     

  • Oaksford, M. & Chater, N. Bayesian Rationality: The Probabilistic Approach to Human Reasoning (Oxford University Press, 2007).


    Google Scholar
     

  • Nelson, J. D. et al. Experience matters: Information acquisition optimizes probability gain. Psychol. Sci. 21(7), 960–969 (2010).


    Google Scholar
     

  • Nelson, J. D. et al. Children’s sequential information search is sensitive to environmental probabilities. Cognition 130(1), 74–80 (2014).


    Google Scholar
     

  • Schmidhuber, J. Curious model-building control systems. In 1991 IEEE International Joint Conference on Neural Networks (IEEE, 1991).

  • Thrun, S. & Möller, K. Active exploration in dynamic environments. In Advances in Neural Information Processing Systems (1992).

  • Thrun, S. Exploration in active learning. In Handbook of Brain Science and Neural Networks 381–384 (1995).

  • Settles, B. Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012).

    MATH 

    Google Scholar
     

  • Markant, D. B. & Gureckis, T. M. Is it better to select or to receive? Learning via active and passive hypothesis testing. J. Exp. Psychol. Gen. 143(1), 94 (2014).


    Google Scholar
     

  • Griffiths, T. L. & Tenenbaum, J. B. Structure and strength in causal induction. Cogn. Psychol. 51(4), 334–384 (2005).


    Google Scholar
     

  • Kemp, C. & Tenenbaum, J. B. Structured statistical models of inductive reasoning. Psychol. Rev. 116(1), 20 (2009).


    Google Scholar
     

  • Koechlin, E. Prefrontal executive function and adaptive behavior in complex environments. Curr. Opin. Neurobiol. 37, 1–6 (2016).

    CAS 

    Google Scholar
     

  • Wason, P.C. Reasoning. In New Horizons in Psychology (eds Foss, B.) 135–151 (1966).

  • Wason, P. C. Reasoning about a rule. Q. J. Exp. Psychol. 20(3), 273–281 (1968).

    CAS 

    Google Scholar
     

  • Gregory, R. On how little information controls so much behaviour. Ergonomics 13(1), 25–35 (1970).

    CAS 

    Google Scholar
     

  • Snyder, M. & Swann, W. B. Hypothesis-testing processes in social interaction. J. Pers. Soc. Psychol. 36(11), 1202 (1978).


    Google Scholar
     

  • Trope, Y. & Bassok, M. Confirmatory and diagnosing strategies in social information gathering. J. Pers. Soc. Psychol. 43(1), 22 (1982).


    Google Scholar
     

  • Klayman, J. & Ha, Y.-W. Confirmation, disconfirmation, and information in hypothesis testing. Psychol. Rev. 94(2), 211 (1987).


    Google Scholar
     

  • Siskind, J. M. A computational study of cross-situational techniques for learning word-to-meaning mappings. Cognition 61(1–2), 39–91 (1996).

    CAS 

    Google Scholar
     

  • Trope, Y. & Liberman, A. Social hypothesis testing: Cognitive and motivational mechanisms (1996).

  • Poletiek, F. H. Hypothesis-Testing Behaviour (Psychology Press, 2013).


    Google Scholar
     

  • Markant, D. B. et al. Self-directed learning favors local, rather than global, uncertainty. Cogn. Sci. 40(1), 100–120 (2016).


    Google Scholar
     

  • Pirolli, P. & Card, S. Information foraging. Psychol. Rev. 106(4), 643 (1999).


    Google Scholar
     

  • Najemnik, J. & Geisler, W. S. Optimal eye movement strategies in visual search. Nature 434(7031), 387–391 (2005).

    CAS 

    Google Scholar
     

  • Vergassola, M. et al. ‘Infotaxis’ as a strategy for searching without gradients. Nature 445(7126), 406 (2007).

    CAS 

    Google Scholar
     

  • Johnson, A. et al. The hippocampus and exploration: dynamically evolving behavior and neural representations. Front. Hum. Neurosci. 6, 216 (2012).


    Google Scholar
     

  • Manohar, S. G. & Husain, M. Attention as foraging for information and value. Front. Hum. Neurosci. 7, 711 (2013).


    Google Scholar
     

  • Good, I. J. Weight of evidence, corroboration, explanatory power, information and the utility of experiments. J. R. Stat. Soc. Ser. B (Methodol.) 22(2), 319–331 (1960).

    MATH 

    Google Scholar
     

  • Myung, J. I. & Pitt, M. A. Optimal experimental design for model discrimination. Psychol. Rev. 116(3), 499 (2009).


    Google Scholar
     

  • Markant, D. & Gureckis, T. Category learning through active sampling. In Proceedings of the Annual Meeting of the Cognitive Science Society (2010).

  • Markant, D. & Gureckis, T. Modeling information sampling over the course of learning. In Proceedings of the Annual Meeting of the Cognitive Science Society (2011).

  • Tsividis, P., et al. Information selection in noisy environments with large action spaces. In Proceedings of the Annual Meeting of the Cognitive Science Society (2014).

  • Rich, A. S. & Gureckis, T. M. Exploratory choice reflects the future value of information. Decision 5, 177 (2017).


    Google Scholar
     

  • Nelson, J. & Movellan, J. Active inference in concept learning. Adv. Neural Inf. Process. Syst. 13 (2000).

  • Steyvers, M. et al. Inferring causal networks from observations and interventions. Cogn. Sci. 27(3), 453–489 (2003).


    Google Scholar
     

  • Schulz, L. E. et al. Preschool children learn about causal structure from conditional interventions. Dev. Sci. 10(3), 322–332 (2007).


    Google Scholar
     

  • Najemnik, J. & Geisler, W. S. Eye movement statistics in humans are consistent with an optimal search strategy. J. Vis. 8(3), 4 (2008).


    Google Scholar
     

  • Gopnik, A. The Philosophical Baby: What Children’s Minds Tell Us About Truth, Love & the Meaning of Life (Random House, 2009).


    Google Scholar
     

  • Bonawitz, E. B. et al. Just do it? Investigating the gap between prediction and action in toddlers’ causal inferences. Cognition 115(1), 104–117 (2010).


    Google Scholar
     

  • Cook, C. et al. Where science starts: Spontaneous experiments in preschoolers’ exploratory play. Cognition 120(3), 341–349 (2011).


    Google Scholar
     

  • Bramley, N. R. et al. Conservative forgetful scholars: How people learn causal structure through sequences of interventions. J. Exp. Psychol. Learn. Mem. Cogn. 41(3), 708 (2015).


    Google Scholar
     

  • Ruggeri, A. & Lombrozo, T. Children adapt their questions to achieve efficient search. Cognition 143, 203–216 (2015).


    Google Scholar
     

  • McCormack, T. et al. Children’s use of interventions to learn causal structure. J. Exp. Child Psychol. 141, 1–22 (2016).


    Google Scholar
     

  • Rothe, A. et al. Do people ask good questions?. Comput. Brain Behav. 1(1), 69–89 (2018).


    Google Scholar
     

  • Meier, K. M. & Blair, M. R. Waiting and weighting: Information sampling is a balance between efficiency and error-reduction. Cognition 126(2), 319–325 (2013).


    Google Scholar
     

  • Yang, S.C.-H. et al. Active sensing in the categorization of visual patterns. Elife 5, e12215 (2016).


    Google Scholar
     

  • Nelson, J.D., et al. Towards a theory of heuristic and optimal planning for sequential information search (2018).

  • Badre, D. et al. Frontal cortex and the discovery of abstract action rules. Neuron 66(2), 315–326 (2010).

    CAS 

    Google Scholar
     

  • Wu, C. M. et al. Generalization guides human exploration in vast decision spaces. Nat. Hum. Behav. 2(12), 915–924 (2018).


    Google Scholar
     

  • Schulz, E. et al. Finding structure in multi-armed bandits. Cogn. Psychol. 119, 101261 (2020).


    Google Scholar
     

  • Schapiro, A. C. et al. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16(4), 486–492 (2013).

    CAS 

    Google Scholar
     

  • Collins, A. & Koechlin, E. Reasoning, learning, and creativity: frontal lobe function and human decision-making. PLoS Biol. 10(3), e1001293 (2012).

    CAS 

    Google Scholar
     

  • Collins, A. G. & Frank, M. J. Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychol. Rev. 120(1), 190 (2013).


    Google Scholar
     

  • Collins, A. G. et al. Human EEG uncovers latent generalizable rule structure during learning. J. Neurosci. 34(13), 4677–4685 (2014).

    CAS 

    Google Scholar
     

  • Donoso, M. et al. Foundations of human reasoning in the prefrontal cortex. Science 344(6191), 1481–1486 (2014).

    CAS 

    Google Scholar
     

  • Collins, A. G. The cost of structure learning. J. Cogn. Neurosci. 29(10), 1646–1655 (2017).


    Google Scholar
     

  • Xia, L. & Collins, A. G. Temporal and state abstractions for efficient learning, transfer, and composition in humans. Psychol. Rev. 128, 643 (2021).


    Google Scholar
     

  • Hills, T. T. Animal foraging and the evolution of goal-directed cognition. Cogn. Sci. 30(1), 3–41 (2006).


    Google Scholar
     

  • Viswanathan, G. M. et al. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge University Press, 2011).

    MATH 

    Google Scholar
     

  • Hills, T. T. et al. Adaptive Lévy processes and area-restricted search in human foraging. PLoS ONE 8(4), e60488 (2013).

    CAS 

    Google Scholar
     

  • Hills, T. T. et al. The central executive as a search process: Priming exploration and exploitation across domains. J. Exp. Psychol. Gen. 139(4), 590 (2010).


    Google Scholar
     

  • Cain, M. S. et al. A Bayesian optimal foraging model of human visual search. Psychol. Sci. 23, 0956797612440460 (2012).


    Google Scholar
     

  • Wolfe, J. M. When is it time to move to the next raspberry bush? Foraging rules in human visual search. J. Vis. 13(3), 1–17 (2013).


    Google Scholar
     

  • Calhoun, A. J. et al. Maximally informative foraging by Caenorhabditis elegans. Elife 3, e04220 (2014).


    Google Scholar
     

  • Rothe, A., et al. Asking and evaluating natural language questions. In CogSci (2016).

  • Huberman, B. A. et al. Strong regularities in world wide web surfing. Science 280(5360), 95–97 (1998).

    CAS 

    Google Scholar
     

  • Church, K. & Hanks, P. Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990).


    Google Scholar
     

  • Payne, S. J. et al. Discretionary task interleaving: Heuristics for time allocation in cognitive foraging. J. Exp. Psychol. Gen. 136(3), 370 (2007).


    Google Scholar
     

  • Wilke, A. et al. Fishing for the right words: Decision rules for human foraging behavior in internal search tasks. Cogn. Sci. 33(3), 497–529 (2009).


    Google Scholar
     

  • Payne, S. & Duggan, G. Giving up problem solving. Mem. Cognit. 39(5), 902–913 (2011).


    Google Scholar
     

  • Hills, T. T. et al. Foraging in semantic fields: How we search through memory. Top. Cogn. Sci. 7(3), 513–534 (2015).


    Google Scholar
     

  • Turrin, C. et al. Social resource foraging is guided by the principles of the Marginal Value Theorem. Sci. Rep. 7(1), 11274 (2017).


    Google Scholar
     

  • Saraiya, P., et al. Effective features of algorithm visualizations. In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (2004).

  • Lam, H. A framework of interaction costs in information visualization. IEEE Trans. Vis. Comput. Graph. 14(6), 1149–1156 (2008).


    Google Scholar
     

  • Ye, W. & Damian, M. F. Exploring task switch costs in a color-shape decision task via a mouse tracking paradigm. J. Exp. Psychol. Hum. Percept. Perform. 48(1), 8 (2022).


    Google Scholar
     

  • Araujo, C. et al. Eye movements during visual search: The costs of choosing the optimal path. Vis. Res. 41(25–26), 3613–3625 (2001).

    CAS 

    Google Scholar
     

  • Baloh, R. W. et al. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology 25(11), 1065–1065 (1975).

    CAS 

    Google Scholar
     

  • van Beers, R. J. The sources of variability in saccadic eye movements. J. Neurosci. 27(33), 8757–8770 (2007).


    Google Scholar
     

  • Hoppe, D. & Rothkopf, C. A. Multi-step planning of eye movements in visual search. Sci. Rep. 9(1), 1–12 (2019).

    CAS 

    Google Scholar
     

  • Callaway, F. et al. Fixation patterns in simple choice reflect optimal information sampling. PLoS Comput. Biol. 17(3), e1008863 (2021).

    CAS 

    Google Scholar
     

  • Wedel, M., et al. Modeling eye movements during decision making: A review. Psychometrika 1–33 (2022).

  • Oaten, A. Optimal foraging in patches: A case for stochasticity. Theor. Popul. Biol. 12(3), 263–285 (1977).

    CAS 
    MATH 

    Google Scholar
     

  • Ollason, J. Learning to forage—optimally?. Theor. Popul. Biol. 18(1), 44–56 (1980).

    CAS 

    Google Scholar
     

  • Wyckoff, L. B. Jr. The role of observing responses in discrimination learning. Part I. Psychol. Rev. 59(6), 431 (1952).


    Google Scholar
     

  • Wyckoff, L. Toward a quantitative theory of secondary reinforcement. Psychol. Rev. 66(1), 68 (1959).

    CAS 

    Google Scholar
     

  • Blanchard, R. The effect of S− on observing behavior. Learn. Motiv. 6(1), 1–10 (1975).


    Google Scholar
     

  • Dinsmoor, J. A. Observing and conditioned reinforcement. Behav. Brain Sci. 6(4), 693–704 (1983).


    Google Scholar
     

  • Roper, K. L. & Zentall, T. R. Observing behavior in pigeons: The effect of reinforcement probability and response cost using a symmetrical choice procedure. Learn. Motiv. 30(3), 201–220 (1999).


    Google Scholar
     

  • Vasconcelos, M. et al. Irrational choice and the value of information. Sci. Rep. 5(1), 1–12 (2015).


    Google Scholar
     

  • Prokasy, W. F. Jr. The acquisition of observing responses in the absence of differential external reinforcement. J. Comp. Physiol. Psychol. 49(2), 131 (1956).


    Google Scholar
     

  • Kreps, D. M. & Porteus, E. L. Temporal resolution of uncertainty and dynamic choice theory. Econom. J. Econom. Soc. 185–200 (1978).

  • Beierholm, U. R. & Dayan, P. Pavlovian-instrumental interaction in ‘observing behavior’. PLoS Comput. Biol. 6(9), e1000903 (2010).


    Google Scholar
     

  • Basile, B. M. & Hampton, R. R. Monkeys recall and reproduce simple shapes from memory. Curr. Biol. 21(9), 774–778 (2011).

    CAS 

    Google Scholar
     

  • Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19(12), 758–770 (2018).

    CAS 

    Google Scholar
     

  • Calhoun, A. J. & Hayden, B. Y. The foraging brain. Curr. Opin. Behav. Sci. 5, 24–31 (2015).


    Google Scholar
     

  • Barack, D. L. & Platt, M. L. Engaging and exploring: Cortical circuits for adaptive foraging decisions. In Impulsivity 163–199 (Springer, 2017).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *